Abdominal aortic aneurysm (AAA) is a vascular condition where the use of a biomechanics-based assessment for patient-specific risk assessment is a promising approach for clinical management of the disease. Among various factors that affect such assessment, AAA wall thickness is expected to be an important factor. However, regionally varying patient-specific wall thickness has not been incorporated as a modeling feature in AAA biomechanics. To the best our knowledge, the present work is the first to incorporate patient-specific variable wall thickness without an underlying empirical assumption on its distribution for AAA wall mechanics estimation. In this work, we present a novel method for incorporating regionally varying wall thickness (the “PSNUT” modeling strategy) in AAA finite element modeling and the application of this method to a diameter-matched cohort of 28 AAA geometries to assess differences in wall mechanics originating from the conventional assumption of a uniform wall thickness. For the latter, we used both a literature-derived population average wall thickness (1.5 mm; the “UT” strategy) as well as the spatial average of our patient-specific variable wall thickness (the “PSUT” strategy). For the three different wall thickness modeling strategies, wall mechanics were assessed by four biomechanical parameters: the spatial maxima of the first principal stress, strain, strain-energy density, and displacement. A statistical analysis was performed to address the hypothesis that the use of any uniform wall thickness model resulted in significantly different biomechanical parameters compared to a patient-specific regionally varying wall thickness model. Statistically significant differences were obtained with the UT modeling strategy compared to the PSNUT strategy for the spatial maxima of the first principal stress (p = 0.002), strain (p = 0.0005), and strain-energy density (p = 7.83 e–5) but not for displacement (p = 0.773). Likewise, significant differences were obtained comparing the PSUT modeling strategy with the PSNUT strategy for the spatial maxima of the first principal stress (p = 9.68 e–7), strain (p = 1.03 e–8), strain-energy density (p = 9.94 e–8), and displacement (p = 0.0059). No significant differences were obtained comparing the UT and PSUT strategies for the spatial maxima of the first principal stress (p = 0.285), strain (p = 0.152), strain-energy density (p = 0.222), and displacement (p = 0.0981). This work strongly recommends the use of patient-specific regionally varying wall thickness derived from the segmentation of abdominal computed tomography (CT) scans if the AAA finite element analysis is focused on estimating peak biomechanical parameters, such as stress, strain, and strain-energy density.

References

1.
Newman
,
A. B.
,
Arnold
,
A. M.
,
Burke
,
G. L.
,
O'Leary
,
D. H.
, and
Manolio
,
T. A.
,
2001
, “
Cardiovascular Disease and Mortality in Older Adults With Small Abdominal Aortic Aneurysms Detected by Ultrasonography: The Cardiovascular Health Study
,”
Ann. Intern Med.
,
134
(
3
), pp.
182
190
.10.7326/0003-4819-134-3-200102060-00008
2.
Vorp
,
D. A.
,
2007
, “
Biomechanics of Abdominal Aortic Aneurysm
,”
J. Biomech.
,
40
(
9
), pp.
1887
1902
.10.1016/j.jbiomech.2006.09.003
3.
Chaikof
,
E. L.
,
Brewster
,
D. C.
,
Dalman
,
R. L.
,
Makaroun
,
M. S.
,
Illig
,
K. A.
,
Sicard
,
G. A.
,
Timaran
,
C. H.
,
Upchurch
,
G. R.
, Jr.
,
Veith
,
F. J.
, and
Society for Vascular Surgery
,
2009
, “
The Care of Patients With an Abdominal Aortic Aneurysm: The Society for Vascular Surgery Practice Guidelines
,”
J. Vasc. Surg.
,
50
(
4 Suppl
), pp.
S2
S49
.10.1016/j.jvs.2009.07.002
4.
Darling
,
R. C.
,
Messina
,
C. R.
,
Brewster
,
D. C.
, and
Ottinger
,
L. W.
,
1977
, “
Autopsy Study of Unoperated Abdominal Aortic Aneurysms. The Case for Early Resection
,”
Circulation
,
56
(
3 Suppl
), pp.
II161
II164
.
5.
Fillinger
,
M.
,
2007
, “
Who Should We Operate On and How Do We Decide: Predicting Rupture and Survival in Patients With Aortic Aneurysm
,”
Semin Vasc. Surg.
,
20
(
2
), pp.
121
127
.10.1053/j.semvascsurg.2007.04.001
6.
Humphrey
,
J. D.
, and
Taylor
,
C. A.
,
2008
, “
Intracranial and Abdominal Aortic Aneurysms: Similarities, Differences, and Need for a New Class of Computational Models
,”
Annu. Rev. Biomed. Eng.
,
10
, pp.
221
246
.10.1146/annurev.bioeng.10.061807.160439
7.
Taylor
,
C. A.
, and
Humphrey
,
J. D.
,
2009
, “
Open Problems in Computational Vascular Biomechanics: Hemodynamics and Arterial Wall Mechanics
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
45–46
), pp.
3514
3523
.10.1016/j.cma.2009.02.004
8.
Reeps
,
C.
,
Gee
,
M.
,
Maier
,
A.
,
Gurdan
,
M.
,
Eckstein
,
H. H.
, and
Wall
,
W. A.
,
2010
, “
The Impact of Model Assumptions on Results of Computational Mechanics in Abdominal Aortic Aneurysm
,”
J. Vasc. Surg.
,
51
(
3
), pp.
679
688
.10.1016/j.jvs.2009.10.048
9.
Malkawi
,
A. H.
,
Hinchliffe
,
R. J.
,
Xu
,
Y.
,
Holt
,
P. J.
,
Loftus
, I
. M.
, and
Thompson
,
M. M.
,
2010
, “
Patient-Specific Biomechanical Profiling in Abdominal Aortic Aneurysm Development and Rupture
,”
J. Vasc. Surg.
,
52
(
2
), pp.
480
488
.10.1016/j.jvs.2010.01.029
10.
Thubrikar
,
M. J.
,
Labrosse
,
M.
,
Robicsek
,
F.
,
Al-Soudi
,
J.
, and
Fowler
,
B.
,
2001
, “
Mechanical Properties of Abdominal Aortic Aneurysm Wall
,”
J. Med. Eng. Technol.
,
25
(
4
), pp.
133
142
.10.1080/03091900110057806
11.
Raghavan
,
M. L.
,
Kratzberg
,
J.
,
Castro de Tolosa
,
E. M.
,
Hanaoka
,
M. M.
,
Walker
,
P.
, and
da Silva
,
E. S.
,
2006
, “
Regional Distribution of Wall Thickness and Failure Properties of Human Abdominal Aortic Aneurysm
,”
J. Biomech.
,
39
(
16
), pp.
3010
3016
.10.1016/j.jbiomech.2005.10.021
12.
Di Martino
,
E. S.
,
Bohra
,
A.
,
Vande Geest
,
J. P.
,
Gupta
,
N.
,
Makaroun
,
M. S.
, and
Vorp
,
D. A.
,
2006
, “
Biomechanical Properties of Ruptured Versus Electively Repaired Abdominal Aortic Aneurysm Wall Tissue
,”
J. Vasc. Surg.
,
43
(
3
), pp.
570
576
.10.1016/j.jvs.2005.10.072
13.
Schriefl
,
A. J.
,
Zeindlinger
,
G.
,
Pierce
,
D. M.
,
Regitnig
,
P.
, and
Holzapfel
,
G. A.
,
2012
, “
Determination of the Layer-Specific Distributed Collagen Fibre Orientations in Human Thoracic and Abdominal Aortas and Common Iliac Arteries
,”
J. R. Soc., Interface
,
9
(
71
), pp.
1275
1286
.10.1098/rsif.2011.0727
14.
Martufi
,
G.
,
Di Martino
,
E. S.
,
Amon
,
C. H.
,
Muluk
,
S. C.
, and
Finol
,
E. A.
,
2009
, “
Three-Dimensional Geometrical Characterization of Abdominal Aortic Aneurysms: Image-Based Wall Thickness Distribution
,”
ASME J. Biomech. Eng.
,
131
(
6
), p.
061015
.10.1115/1.3127256
15.
Shum
,
J.
,
DiMartino
,
E. S.
,
Goldhamme
,
A.
,
Goldman
,
D. H.
,
Acker
,
L. C.
,
Patel
,
G.
,
Ng
,
J. H.
,
Martufi
,
G.
, and
Finol
,
E. A.
,
2010
, “
Semiautomatic Vessel Wall Detection and Quantification of Wall Thickness in Computed Tomography Images of Human Abdominal Aortic Aneurysms
,”
Med. Phys.
,
37
(
2
), pp.
638
648
.10.1118/1.3284976
16.
Shum
,
J.
,
Martufi
,
G.
,
Di Martino
,
E.
,
Washington
,
C. B.
,
Grisafi
,
J.
,
Muluk
,
S. C.
, and
Finol
,
E. A.
,
2011
, “
Quantitative Assessment of Abdominal Aortic Aneurysm Geometry
,”
Ann. Biomed. Eng.
,
39
(
1
), pp.
277
286
.10.1007/s10439-010-0175-3
17.
Shum
,
J.
,
2011
, “
Risk Assessment of Abdominal Aortic Aneurysms by Geometry Quantification Measures
,” Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA.
18.
Raut
,
S. S.
,
Jana
,
A.
, and
Finol
,
E. A.
, “
A Framework for Multi-domain Volume Meshing for FSI Analysis of Vasculatures: An Application to Abdominal Aortic Aneurysm
,”
IEEE Trans. Biomed. Eng.
, (submitted).
19.
Raut
,
S. S.
,
2012
, “
Patient-Specific 3D Vascular Reconstruction and Computational Assessment of Biomechanics—An Application to Abdominal Aortic Aneurysm
,” Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA.
20.
Raghavan
,
M. L.
, and
Vorp
,
D. A.
,
2000
, “
Toward a Biomechanical Tool to Evaluate Rupture Potential of Abdominal Aortic Aneurysm: Identification of a Finite Strain Constitutive Model and Evaluation of Its Applicability
,”
J. Biomech.
,
33
(
4
), pp.
475
482
.10.1016/S0021-9290(99)00201-8
21.
Sussman
,
T.
, and
Bathe
,
K. J.
,
1987
, “
A Finite Element Formulation for Nonlinear Incompressible Elastic and Inelastic Analysis
,”
Comput. Struct.
,
26
(
1
), pp.
357
409
.10.1016/0045-7949(87)90265-3
22.
ADINA
, 2012,
ADINA Theory and Modeling Guide, Volume I: ADINA Solids & Structures
,
ADINA R&D, Inc.
,
Watertown, MA
.
23.
Bathe
,
K. J.
,
1996
,
Finite Element Procedures
,
Prentice Hall
,
Englewood Cliffs, NJ
.
24.
Raut
,
S. S.
,
Jana
,
A.
, and
Finol
,
E. A.
, “
Evaluation of the Effects of Aneurysm Geometry and Vascular Wall Material Properties on the AAA Wall Mechanics
,”
ASME J. Biomech. Eng.
, (submitted).
25.
Doyle
,
B. J.
,
Cloonan
,
A. J.
,
Walsh
,
M. T.
,
Vorp
,
D. A.
, and
McGloughlin
,
T. M.
,
2010
, “
Identification of Rupture Locations in Patient-Specific Abdominal Aortic Aneurysms Using Experimental and Computational Techniques
,”
J. Biomech.
,
43
(
7
), pp.
1408
1416
.10.1016/j.jbiomech.2009.09.057
26.
Shum
,
J.
,
Xu
,
A.
,
Chatnuntawech
, I
.
, and
Finol
,
E. A.
,
2011
, “
A Framework for the Automatic Generation of Surface Topologies for Abdominal Aortic Aneurysm Models
,”
Ann. Biomed. Eng.
,
39
(
1
), pp.
249
259
.10.1007/s10439-010-0165-5
27.
Auer
,
M.
, and
Gasser
,
T. C.
,
2010
, “
Reconstruction and Finite Element Mesh Generation of Abdominal Aortic Aneurysms From Computerized Tomography Angiography Data With Minimal User Interactions
,”
IEEE Trans. Med. Imaging
,
29
(
4
), pp.
1022
1028
.10.1109/TMI.2009.2039579
28.
Maier
,
A.
,
Gee
,
M. W.
,
Reeps
,
C.
,
Pongratz
,
J.
,
Eckstein
,
H. H.
, and
Wall
,
W. A.
,
2010
, “
A Comparison of Diameter, Wall Stress, and Rupture Potential Index for Abdominal Aortic Aneurysm Rupture Risk Prediction
,”
Ann. Biomed. Eng.
,
38
(
10
), pp.
3124
3134
.10.1007/s10439-010-0067-6
29.
Raut
,
S. S.
,
Chandra
,
S.
,
Shum
,
J.
, and
Finol
,
E. A.
, “
The Role of Geometric and Biomechanical Factors in Abdominal Aortic Aneurysm Rupture Risk Assessment
,”
Ann. Biomed. Eng.
, (in press).
30.
Vande Geest
,
J. P.
,
Schmidt
,
D. E.
,
Sacks
,
M. S.
, and
Vorp
,
D. A.
,
2008
, “
The Effects of Anisotropy on the Stress Analyses of Patient-Specific Abdominal Aortic Aneurysms
,”
Ann. Biomed. Eng.
,
36
(
6
), pp.
921
932
.10.1007/s10439-008-9490-3
31.
Rodriguez
,
J. F.
,
Martufi
,
G.
,
Doblare
,
M.
, and
Finol
,
E. A.
,
2009
, “
The Effect of Material Model Formulation in the Stress Analysis of Abdominal Aortic Aneurysms
,”
Ann. Biomed. Eng.
,
37
(
11
), pp.
2218
2221
.10.1007/s10439-009-9767-1
32.
Fillinger
,
M. F.
,
Marra
,
S. P.
,
Raghavan
,
M. L.
, and
Kennedy
,
F. E.
,
2003
, “
Prediction of Rupture Risk in Abdominal Aortic Aneurysm During Observation: Wall Stress Versus Diameter
,”
J. Vasc. Surg.
,
37
(
4
), pp.
724
732
.10.1067/mva.2003.213
33.
Kazi
,
M.
,
Thyberg
,
J.
,
Religa
,
P.
,
Roy
,
J.
,
Eriksson
,
P.
,
Hedin
,
U.
, and
Swedenborg
,
J.
,
2003
, “
Influence of Intraluminal Thrombus on Structural and Cellular Composition of Abdominal Aortic Aneurysm Wall
,”
J. Vasc. Surg.
,
38
(
6
), pp.
1283
1292
.10.1016/S0741-5214(03)00791-2
You do not currently have access to this content.