This study was conducted to compare the heat shock responses of cells grown in 2D and 3D culture environments as indicated by the level of heat shock protein 70 expression and the incidence of apoptosis and necrosis of prostate cancer cell lines in response to graded hyperthermia. PC3 cells were stably transduced with a dual reporter system composed of two tandem expression cassettes—a conditional heat shock protein promoter driving the expression of green fluorescent protein (HSPp-GFP) and a cytomegalovirus (CMV) promoter controlling the constitutive expression of a “beacon” red fluorescent protein (CMVp-RFP). Two-dimensional and three-dimensional cultures of PC3 prostate cancer cells were grown in 96-well plates for evaluation of their time-dependent response to supraphysiological temperature. To induce controlled hyperthermia, culture plates were placed on a flat copper surface of a circulating water manifold that maintained the specimens within ±0.1 °C of a target temperature. Hyperthermia protocols included various combinations of temperature, ranging from 37 °C to 57 °C, and exposure times of up to 2 h. The majority of protocols were focused on temperature and time permutations, where the response gradient was greatest. Post-treatment analysis by flow cytometry analysis was used to measure the incidences of apoptosis (annexin V-FITC stain), necrosis (propidium iodide (PI) stain), and HSP70 transcription (GFP expression). Cells grown in 3D compared with 2D culture showed reduced incidence of apoptosis and necrosis and a higher level of HSP70 expression in response to heat shock at the temperatures tested. Cells responded differently to hyperthermia when grown in 2D and 3D cultures. Three-dimensional culture appears to enhance survival plausibly by activating protective processes related to enhanced-HSP70 expression. These differences highlight the importance of selecting physiologically relevant 3D models in assessing cellular responses to hyperthermia in experimental settings.

References

1.
Kennedy
,
J. E.
,
Ter Haar
,
G. R.
, and
Cranston
,
D.
,
2003
, “
High Intensity Focused Ultrasound: Surgery of the Future?
,”
Br. J. Radiol.
,
76
, pp.
590
599
.10.1259/bjr/17150274
2.
Lal
,
S.
,
Clare
,
S. E.
, and
Halas
,
N. J.
,
2008
, “
Nanoshell-Enabled Photothermal Cancer Therapy: Impending Clinical Impact
,”
Acc. Chem. Res.
,
41
(
12
), pp.
1842
1851
.10.1021/ar800150g
3.
Goldberg
,
S. N.
, and
Dupuy
,
D. E.
,
2001
, “
Image-Guided Radiofrequency Tumor Ablation: Challenges and Opportunities—Part I
,”
J. Vasc. Interv. Radiol.
,
12
(
9
), pp.
1021
1032
.10.1016/S1051-0443(07)61587-5
4.
Dupuy
,
D. E.
, and
Goldberg
,
S. N.
,
2001
, “
Image-Guided Radiofrequency Tumor Ablation: Challenges and Opportunities—Part II
,”
J. Vasc. Interv. Radiol.
,
12
(
10
), pp.
1135
1148
.10.1016/S1051-0443(07)61670-4
5.
Brausi
,
M.
,
Castagnetti
,
G.
,
Gavioli
,
M.
,
Peracchia
,
G.
,
de Luca
,
G.
, and
Olmi
,
R.
,
2004
, “
Radio Frequency (RF) Ablation of Renal Tumours Does Not Produce Complete Tumour Destruction: Results of a Phase II Study
,”
Eur. Urol. Suppl.
,
3
(
3
), pp.
14
17
.10.1016/j.eursup.2004.02.004
6.
Solbiati.
L.
,
Ierace
,
T.
,
Goldberg
,
S. N.
,
Sironi
,
S.
,
Livraghi
,
T.
,
Fiocca
,
R.
,
Servadio
,
G.
,
Rizzatto
,
G.
,
Mueller
,
P. R.
,
Del Maschio
,
A.
, and
Gazelle
,
G. S.
,
1997
, “
Percutaneous US-Guided Radio-Frequency Tissue Ablation of Liver Metastases: Treatment and Follow-up in 16 Patients
,”
Radiology
,
202
, pp.
195
203
.10.1148/radiology.202.1.8988211
7.
Oden
,
J. T.
,
Diller
,
K. R.
,
Bajaj
,
C.
,
Browne
,
J. C.
,
Hazle
,
J. D.
,
Babuška
,
I.
,
Bass
,
J.
,
Biduat
,
L.
,
Demkowicz
,
L.
,
Elliott
,
A.
,
Feng
,
Y.
,
Fuentes
,
D.
,
Prudhomme
,
S.
,
Rylander
,
M. N.
,
Stafford
,
R. J.
, and
Zhang
,
Y.
,
2007
, “
Dynamic Data-Driven Finite Element Models for Laser Treatment of Cancer
,”
Numer. Methods Partial Differ. Equation
,
23
(
4
), pp.
904
922
.10.1002/num.20251
8.
Fuentes
,
D.
,
Oden
,
J. T.
,
Diller
,
K. R.
,
Hazle
,
J. D.
,
Elliott
,
A.
,
Shetty
,
A.
, and
Stafford
,
R. J.
,
2009
, “
Computational Modeling and Real-Time Control of Patient-Specific Laser Treatment of Cancer
,”
Ann. Biomed. Eng.
,
37
, pp.
763
782
.10.1007/s10439-008-9631-8
9.
Lindquist
,
S.
, and
Craig
,
E. A.
,
1988
, “
The Heat-Shock Proteins
,”
Annu. Rev. Genet.
,
22
, pp.
631
677
.10.1146/annurev.ge.22.120188.003215
10.
Lindquist
,
S.
,
1986
, “
The Heat-Shock Response
,”
Annu. Rev. Biochem.
,
55
, pp.
1151
1191
.10.1146/annurev.bi.55.070186.005443
11.
Yeh
,
C.
,
Hsu
,
S.
,
Yang
,
C.
,
Chien
,
C.
, and
Wang
,
N.
,
2010
, “
Hypoxic Preconditioning Reinforces HIF-Alpha-Dependent HSP70 Signaling to Reduce Ischemic Renal Failure-Induced Renal Tubular Apoptosis and Autophagy
.”
Life Sci.
,
86
(
3–4
), pp.
115
123
.10.1016/j.lfs.2009.11.022
12.
Kurz
,
A. K.
,
Schliess
,
F.
, and
Häussinger
,
D.
,
1998
, “
Osmotic Regulation of the Heat Shock Response in Primary Rat Hepatocytes
,”
Hepatology
,
28
(
3
), pp.
774
781
.10.1002/hep.510280326
13.
Schett
,
G.
,
Redlich
,
K.
,
Xu
,
Q.
,
Bizan
,
P.
,
Gröger
,
M.
, and
Tohidast-Akrad
,
M.
,
1998
, “
Enhanced Expression of Heat Shock Protein 70 (Hsp70) and Heat Shock Factor 1 (HSF1) Activation in Rheumatoid Arthritis Synovial Tissue. Differential Regulation of Hsp70 Expression and HSF1 Activation in Synovial Fibroblasts by Proinflammatory Cytokines, Shear Stress, and Antiinflammatory Drugs
,”
J. Clin. Invest.
,
102
(
2
), pp.
302
311
.10.1172/JCI2465
14.
Calini
,
V.
,
Urani
,
C.
, and
Camatini
,
M.
,
2003
, “
Overexpression of HSP70 is Induced by Ionizing Radiation in C3H 10T1/2 Cells and Protects From DNA Damage
,”
Toxicol. in Vitro
,
17
(
5–6
), pp.
561
566
.10.1016/S0887-2333(03)00116-4
15.
Kregel
,
K. C.
,
2002
, “
Heat Shock Proteins: Modifying Factors in Physiological Stress Responses and Acquired Thermotolerance
,”
J. Appl. Physiol.
,
92
(
5
), pp.
2177
2186
.10.1152/japplphysiol.01267.2001
16.
Diller
,
K. R.
,
2006
, “
Stress Protein Expression Kinetics
,”
Annu. Rev. Biomed. Eng.
,
8
, pp.
403
424
.10.1146/annurev.bioeng.7.060804.100449
17.
Calderwood
,
S. K.
,
Khaleque
,
M. A.
,
Sawyer
,
D. B.
, and
Ciocca
,
D. R.
,
2006
, “
Heat Shock Proteins in Cancer: Chaperones of Tumorigenesis
,”
Trends Biochem. Sci.
,
31
(
3
), pp.
164
172
.10.1016/j.tibs.2006.01.006
18.
Khoei
,
S.
,
Fazeli
,
G.
,
Amerizadeh
,
A.
,
Eslimi
,
D.
, and
Goliaei
,
B.
,
2010
, “
Elimination of Enhanced Thermal Resistance of Spheroid Culture Model of Prostate Carcinoma Cell Line by Inhibitors of Hsp70 Induction
,”
Yakhteh Med. J.
,
12
(
1
), pp.
105
112
. Available at: http://celljournal.org/components4.php?rQV==wHQwAkO0JXY0N3XmxHQwYDQ6QWS05WZyFGcfZGfAhjN1EDQ6QWStVGdp9lZ8BEMApDZJxWY0J3bQxWYuJXdvp2XmxHQyATNApDZJ52bpR3Yh9lZ
19.
Khoei
,
S.
,
Goliaei
,
B.
,
Neshasteh-Riz
,
A.
, and
Deizadji
,
A.
,
2004
, “
The Role of Heat Shock Protein 70 in the Thermoresistance of Prostate Cancer Cell Line Spheroids
,”
FEBS Lett.
,
561
(
1–3
), pp.
144
148
.10.1016/S0014-5793(04)00158-9
20.
Sun
,
T.
,
Jackson
,
S.
,
Haycock
,
J. W.
, and
Macneil
,
S.
,
2006
, “
Culture of Skin Cells in 3D Rather Than 2D Improves Their Ability to Survive Exposure to Cytotoxic Agents
,”
J. Biotech.
,
122
(
3
), pp.
372
381
.10.1016/j.jbiotec.2005.12.021
21.
Jain
,
R. K.
,
2005
, “
Normalization of Tumor Vasculature: An Emerging Concept in Antiangiogenic Therapy
,”
Science
,
307
, pp.
58
62
.10.1126/science.1104819
22.
Harris
,
A. L.
,
2002
, “
Hypoxia—A Key Regulatory Factor in Tumor Growth
,”
Nature
,
2
, pp.
38
47
.10.1038/nrc704
23.
Santos
,
I.
,
Haemmerich
,
D.
,
Pinheiro
,
C.
, and
Rocha
,
A.
,
2008
, “
Effect of Variable Heat Transfer Coefficient on Tissue Temperature Next to a Large Vessel During Radio Frequency Tumor Ablation
,”
Biomed. Eng. Online
,
7
(
1
), p.
21
.10.1186/1475-925X-7-21
24.
Gomer
,
C. J.
,
Ryter
,
S. W.
,
Ferrario
,
A.
,
Rucker
,
N.
,
Wong
,
S.
, and
Fisher
,
A. M. R.
,
1996
, “
Photodynamic Therapy-Mediated Oxidative Stress can Induce Expression of Heat Shock Proteins
,”
Cancer Res.
,
56
(
10
), pp.
2355
2360
. Available at: http://cancerres.aacrjournals.org/content/56/10/2355.abstract
25.
Luk
,
J. M.
,
Lam
,
C.-T.
,
Siu
,
A. F. M.
,
Lam
,
B. Y.
,
Ng
,
I. O. L.
, and
Ju
,
M.-Y.
,
2006
, “
Proteomic Profiling of Hepatocellular Carcinoma in Chinese Cohort Reveals Heat-Shock Proteins (Hsp27, Hsp70, GRP78) Up-Regulation and Their Associated Prognostic Values
,”
Proteomics
,
6
(
3
), pp.
1049
1057
.10.1002/pmic.200500306
26.
Heacock
,
C. S.
, and
Sutherland
,
R. M.
,
1990
, “
Enhanced Synthesis of Stress Proteins Caused by Hypoxia and Relation to Altered Cell Growth and Metabolism
,”
Br. J. Cancer
,
62
(
2
), pp.
217
225
.10.1038/bjc.1990.264
27.
Li
,
G. C.
, and
Shrieve
,
D. C.
,
1982
, “
Thermal Tolerance and Specific Protein Synthesis in Chinese Hamster Fibroblasts Exposed to Prolonged Hypoxia
,”
Exp. Cell Res.
,
142
(
2
), pp.
464
468
.10.1016/0014-4827(82)90390-1
28.
Khoei
,
S.
,
Goliaei
,
B.
, and
Neshasteh-Riz
,
A.
,
2004
, “
Differential Thermo-Resistance of Multicellular Tumor Spheroids
,”
Iran. J. Sci. Technol.
,
28
, pp.
107
116
.
29.
He
,
X.
, and
Bischof
,
J. C.
,
2005
, “
The Kinetics of Thermal Injury in Human Renal Carcinoma Cells
,”
Ann. Biomed. Eng.
,
33
(
4
), pp.
502
510
.10.1007/s10439-005-2508-1
30.
Connors
,
K. A.
,
1990
,
Chemical Kinetics: The Study of Reaction Rates in Solution
,
VCH Publishers, Inc.
,
New York
.
31.
Rylander
,
M. N.
,
Diller
,
K. R.
,
Wang
,
S.
, and
Aggarwal
,
S. J.
,
2005
, “
Correlation of HSP70 Expression and Cell Viability Following Thermal Stimulation of Bovine Aortic Endothelial Cells
,”
ASME J. Biomech. Eng.
,
127
(5), pp.
751
757
.10.1115/1.1993661
32.
Wang
,
S.
,
Xie
,
W.
,
Rylander
,
M. N.
,
Tucke
,
P. W.
,
Aggarwal
,
S. J.
, and
Diller
,
K. R.
,
2008
, “
HSP70 Kinetics Study by Continuous Observation of HSP-GFP Fusion Protein Expression on a Perfusion Heating Stage
,”
Biotechnol. Bioeng.
,
99
, pp.
146
154
.10.1002/bit.21512
33.
Samali
,
A.
,
Holmberg
,
C. I.
,
Sistonen
,
L.
, and
Orrenius
,
S.
,
1999
, “
Thermotolerance and Cell Death are Distinct Cellular Responses to Stress: Dependence on Heat Shock Proteins
,”
FEBS Lett.
,
461
(
3
), pp.
306
310
.10.1016/S0014-5793(99)01486-6
34.
Huang
,
C.-T.
,
Lu
,
Y.-H.
, and
Jen
,
C.-P.
,
2010
, “
Investigation on Supraphysiological Thermal Injury in Two Well-Differentiated Human Hepatoma Cell Lines, Hepg2 and Hep3B
,”
J. Therm. Biol.
,
35
(
8
), pp.
411
416
.10.1016/j.jtherbio.2010.09.001
35.
Marylevitch
,
N. P.
,
Schuschereba
,
S. T.
,
Mata
,
J. R.
,
Gilligan
,
G. R.
,
Lawlor
,
D. F.
, and
Goodwin
,
C. W.
,
1998
, “
Apoptosis and Accidental Cell Death in Cultured Human Keratinocytes After Thermal Injury
,”
Am. J. Pathol.
,
153
(
2
), pp.
567
577
.10.1016/S0002-9440(10)65599-X
36.
Madersbacher
,
S.
,
Pedevilla
,
M.
,
Vingers
,
L.
,
Susani
,
M.
, and
Marberger
,
M.
,
1995
, “
Effect of High-Intensity Focused Ultrasound on Human Prostate Cancer in Vivo
,”
Cancer Res.
,
55
(
15
), pp.
3346
3351
. Available at: http://cancerres.aacrjournals.org/content/55/15/3346.abstract?sid=e8f2c7a4-bcb4-4695-b408-7c40ee713951
37.
Nijhuis
,
E. H. A.
,
Poot
,
A. A.
,
Feijen
,
J.
, and
Vermes
,
I.
,
2006
, “
Induction of Apoptosis by Heat and γ-Radiation in a Human Lymphoid Cell Line; Role of Mitochondrial Changes and Caspase Activation
,”
Int. J. Hyperthermia
,
22
(
8
), pp.
687
698
.10.1080/02656730601045409
38.
Shelton
,
S. N.
,
Dillard
,
C. D.
, and
Robertson
,
J. D.
,
2010
, “
Activation of Caspase-9, but not Caspase-2 or Caspase-8, is Essential for Heat-Induced Apoptosis in Jurkat Cells
,”
J. Biol. Chem.
,
285
(
52
), pp.
40525
40533
.10.1074/jbc.M110.167635
39.
Wilson
,
L.
, and
Matsudaira
,
P. T.
,
1995
,
Cell Death
, Vol.
46
,
Academic Press
,
New York
.
40.
Ritossa
,
F.
,
1962
, “
A New Puffing Pattern Induced by Temperature Shock and DNP in Drosophila
,”
Cell Mol. Life Sci.
,
18
(
12
), pp.
571
573
.10.1007/BF02172188
41.
Todryk
,
S.
,
Melcher
,
A. A.
,
Hardwick
,
N.
,
Linardakis
,
E.
,
Batemen
,
A.
, and
Colombo
,
M. P.
,
1999
, “
Heat Shock Protein 70 Induced During Tumor Cell Killing Induces Th1 Cytokines and Targets Immature Dendritic Cell Precursors to Enhance Antigen Uptake
,”
J. Immunol.
,
163
(
3
), pp.
1398
1408
. Available at: http://www.jimmunol.org/content/163/3/1398.abstract
42.
Yoo
,
J. C.
, and
Mayman
,
M. J.
,
2006
, “
HSP70 Binds to SHP2 and Has Effects on the SHP2-Related EGFR/GAB1 Signaling Pathway
,”
Biochem. Biophys. Res. Commun.
,
351
(
4
), pp.
979
985
.10.1016/j.bbrc.2006.10.152
43.
Thériault
,
J. R.
,
Mambula
,
S. S.
,
Sawamura
,
T.
,
Stevenson
,
M. A.
, and
Calderwood
,
S. K.
,
2005
, “
Extracellular HSP70 Binding to Surface Receptors Present on Antigen Presenting Cells and Endothelial/Epithelial Cells
,”
FEBS Lett.
,
579
(
9
), pp.
1951
1960
.10.1016/j.febslet.2005.02.046
44.
Beere
,
H. M.
,
Wolf
,
B. B.
,
Cain
,
K.
,
Mosser
,
D. D.
,
Mahboubi
,
A.
, and
Kuwana
,
T.
,
2000
, “
Heat-Shock Protein 70 Inhibits Apoptosis by Preventing Recruitment of Procaspase-9 to the Apaf-1 Apoptosome
,”
Nature Cell Biol.
,
2
(
8
), pp.
469
475
.10.1038/35019501
45.
Ravagnan
,
L.
,
Gurbuxani
,
S.
,
Susin
,
S. A.
,
Maisse
,
C.
,
Daugas
,
E.
, and
Zamzami
,
N.
,
2001
, “
Heat-Shock Protein 70 Antagonizes Apoptosis-Inducing Factor
,”
Nature Cell Biol.
,
3
(
9
), pp.
839
843
.10.1038/ncb0901-839
46.
Kim
,
Y.-M.
,
de Vera
,
M. E.
,
Watkins
,
S. C.
, and
Billiar
,
T. R.
,
1997
, “
Nitric Oxide Protects Cultured Rat Hepatocytes From Tumor Necrosis Factor-α-Induced Apoptosis by Inducing Heat Shock Protein 70 Expression
,”
J. Biol. Chem.
,
272
(
2
), pp.
1402
1411
.10.1074/jbc.272.2.1402
47.
Li
,
C.-Y.
,
Lee
,
J.-S.
,
Ko
,
Y.-G.
,
Kim
,
J.-I.
, and
Seo
,
J.-S.
,
2000
, “
Heat Shock Protein 70 Inhibits Apoptosis Downstream of Cytochrome C Release and Upstream of Caspase-3 Activation
,”
J. Biol. Chem.
,
275
(
33
), pp.
25665
25671
.10.1074/jbc.M906383199
48.
Komarova
,
E. Y.
,
Afanasyeva
,
E. A.
,
Bulatova
,
M. M.
,
Cheetham
,
M. E.
,
Margulis
,
B. A.
, and
Guzhova
,
I. V.
,
2004
, “
Downstream Caspases are Novel Targets for the Antiapoptotic Activity of the Molecular Chaperone HSP70
,”
Cell Stress Chaperones
,
9
(
3
), pp.
265
271
.10.1379/CSC-27R1.1
49.
Creagh
,
E. M.
,
Carmody
,
R. J.
, and
Cotter
,
T. G.
,
2000
, “
Heat Shock Protein 70 Inhibits Caspace-Dependent and -Independent Apoptosis in Jurkat T Cells
,”
Exp. Cell Res.
,
257
(
1
), pp.
58
66
.10.1006/excr.2000.4856
50.
Bretland
,
A. J.
,
Lawry
,
J.
, and
Sharrard
,
R. M.
,
2001
, “
A Study of Death by Anoikis in Cultured Epithelial Cells
,”
Cell Prolif.
,
34
(
4
), pp.
199
210
.10.1046/j.1365-2184.2001.00198.x
51.
Frisch
,
S. M.
, and
Screaton
,
R. A.
,
2001
, “
Anoikis Mechanisms
,”
Curr. Opin. Cell Biol.
,
13
(
5
), pp.
555
562
.10.1016/S0955-0674(00)00251-9
52.
Grossmann
,
J.
,
2002
, “
Molecular Mechanisms of ‘Detachment-Induced Apoptosis—Anoikis’
,”
Apoptosis
,
7
(
3
), pp.
247
260
.10.1023/A:1015312119693
53.
Kamarajan
,
P.
, and
Kapila
,
Y. L.
,
2007
, “
An Altered Fibronectin Matrix Induces Anoikis of Human Squamous Cell Carcinoma Cells by Suppressing Integrin Alpha V Levels and Phosphorylation of FAK and ERK
,”
Apoptosis
,
12
, pp.
2221
2231
.10.1007/s10495-007-0138-9
54.
Bunek
,
J.
,
Kamarajan
,
P.
, and
Kapila
,
Y. L.
,
2011
, “
Anoikis Mediators in Oral Squamous Cell Carcinoma
,”
Oral Dis.
,
17
(
4
), pp.
355
361
.10.1111/j.1601-0825.2010.01763.x
You do not currently have access to this content.