The hinge regions of the bileaflet mechanical heart valve (BMHV) can cause blood element damage due to nonphysiological shear stress levels and regions of flow stasis. Recently, a micro particle image velocimetry (μPIV) system was developed to study whole flow fields within BMHV hinge regions with enhanced spatial resolution under steady leakage flow conditions. However, global velocity maps under pulsatile conditions are still necessary to fully understand the blood damage potential of these valves. The current study hypothesized that the hinge gap width will affect flow fields in the hinge region. Accordingly, the blood damage potential of three St. Jude Medical (SJM) BMHVs with different hinge gap widths was investigated under pulsatile flow conditions, using a μPIV system. The results demonstrated that the hinge gap width had a significant influence during the leakage flow phase in terms of washout and shear stress characteristics. During the leakage flow, the largest hinge gap generated the highest Reynolds shear stress (RSS) magnitudes (∼1000 N/m2) among the three valves at the ventricular side of the hinge. At this location, all three valves indicated viscous shear stresses (VSS) greater than 30 N/m2. The smallest hinge gap exhibited the lowest level of shear stress values, but had the poorest washout flow characteristics among the three valves, demonstrating propensity for flow stasis and associated activated platelet accumulation potential. The results from this study indicate that the hinge is a critical component of the BMHV design, which needs to be optimized to find the appropriate balance between reduction in fluid shear stresses and enhanced washout during leakage flow, to ensure minimal thrombotic complications.

References

1.
Baudet
,
E. M.
,
Puel
,
V.
,
Mcbride
,
J. T.
,
Grimaud
,
J. P.
,
Roques
,
F.
,
Clerc
,
F.
,
Roques
,
X.
, and
Laborde
,
N.
,
1995
, “
Long-Term Results of Valve Replacement With the St. Jude Medical Prosthesis
,”
J. Thorac. Cardiovasc. Surg.
,
109
(
5
), pp.
858
870
.10.1016/S0022-5223(95)70309-8
2.
Roudaut
,
R.
,
Roques
,
X.
,
Lafitte
,
S.
,
Choukroun
,
E.
,
Laborde
,
N.
,
Madona
,
F.
,
Deville
,
C.
, and
Baudet
,
E.
,
2003
, “
Surgery for Prosthetic Valve Obstruction. A Single Center Study of 136 Patients
,”
Eur. J. Cardiothorac. Surg.
,
24
(
6
), pp.
868
872
.10.1016/S1010-7940(03)00568-2
3.
Christy
,
J. R.
, and
Macleod
,
N.
,
1989
, “
The Role of Stasis in the Clotting of Blood and Milk Flows Around Solid Objects
,”
Cardiovasc. Res.
,
23
(
11
), pp.
949
959
.10.1093/cvr/23.11.949
4.
Linde
,
T.
,
Hamilton
,
K. F.
,
Timms
,
D. L.
,
Schmitz-Rode
,
T.
, and
Steinseifer
,
U.
,
2011
, “
A Low-Volume Tester for the Thrombogenic Potential of Mechanical Heart Valve Prostheses
,”
J. Heart Valve Dis.
,
20
(
5
), pp.
510
517
.
5.
Fallon
,
A. M.
,
Shah
,
N.
,
Marzec
,
U. M.
,
Warnock
,
J. N.
,
Yoganathan
,
A. P.
, and
Hanson
,
S. R.
,
2006
, “
Flow and Thrombosis at Orifices Simulating Mechanical Heart Valve Leakage Regions
,”
ASME J. Biomech. Eng.
,
128
(
1
), pp.
30
39
.10.1115/1.2133768
6.
Leo
,
H. L.
,
Simon
,
H. A.
,
Dasi
,
L. P.
, and
Yoganathan
,
A. P.
,
2006
, “
Effect of Hinge Gap Width on the Microflow Structures in 27-Mm Bileaflet Mechanical Heart Valves
,”
J. Heart Valve Dis.
,
15
(
6
), pp.
800
808
.
7.
Simon
,
H. A.
,
2004
, “
Influence of the Implant Location on the Hinge and Leakage Flow Fields Through Bileaflet Mechanical Heart Valves
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta.
8.
Travis
,
B. R.
,
Marzec
,
U. M.
,
Leo
,
H. L.
,
Momin
,
T.
,
Sanders
,
C.
,
Hanson
,
S. R.
, and
Yoganathan
,
A. P.
,
2001
, “
Bileaflet Aortic Valve Prosthesis Pivot Geometry Influences Platelet Secretion and Anionic Phospholipid Exposure
,”
Ann. Biomed. Eng.
,
29
(
8
), pp.
657
664
.10.1114/1.1385808
9.
Jun
,
B. H.
,
Saikrishnan
,
N.
, and
Yoganathan
,
A. P.
,
2013
, “
Micro Particle Image Velocimetry Measurements of Steady Diastolic Leakage Flow in the Hinge of a St. Jude Medical Regent Mechanical Heart Valve
,”
Ann. Biomed. Eng.
,
42
(
3
), pp.
526
540
.10.1007/s10439-013-0919-y
10.
Leo
,
H. L.
,
He
,
Z. M.
,
Ellis
,
J. T.
, and
Yoganathan
,
A. P.
,
2002
, “
Microflow Fields in the Hinge Region of the Carbomedics Bileaflet Mechanical Heart Valve Design
,”
J. Thorac. Cardiovasc. Surg.
,
124
(
3
), pp.
561
574
.10.1067/mtc.2002.125206
11.
Simon
,
H. A.
,
Leo
,
H. L.
,
Carberry
,
J.
, and
Yoganathan
,
A. P.
,
2004
, “
Comparison of the Hinge Flow Fields of Two Bileaflet Mechanical Heart Valves Under Aortic and Mitral Conditions
,”
Ann. Biomed. Eng.
,
32
(
12
), pp.
1607
1617
.10.1007/s10439-004-7814-5
12.
Giersiepen
,
M.
,
Wurzinger
,
L. J.
,
Opitz
,
R.
, and
Reul
,
H.
,
1990
, “
Estimation of Shear Stress-Related Blood Damage in Heart Valve Prostheses—in Vitro Comparison of 25 Aortic Valves
,”
Int. J. Artif. Organs
,
13
(
5
), pp.
300
306
.
13.
Gross
,
J. M.
,
Shu
,
M. C. S.
,
Dai
,
F. F.
,
Ellis
,
J.
, and
Yoganathan
,
A. P.
,
1996
, “
Microstructural Flow Analysis Within a Bileaflet Mechanical Heart Valve Hinge
,”
J. Heart Valve Dis.
,
5
(
6
), pp.
581
590
.
14.
Leverett
,
L. B.
,
Lynch
,
E. C.
,
Alfrey
,
C. P.
, and
Hellums
,
J. D.
,
1972
, “
Red Blood-Cell Damage by Shear-Stress
,”
Biophys. J.
,
12
(
3
), pp.
257
273
.10.1016/S0006-3495(72)86085-5
15.
Lu
,
P. C.
,
Lai
,
H. C.
, and
Liu
,
J. S.
,
2001
, “
A Reevaluation and Discussion on the Threshold Limit for Hemolysis in a Turbulent Shear Flow
,”
J. Biomech.
,
34
(
10
), pp.
1361
1364
.10.1016/S0021-9290(01)00084-7
16.
Murphy
,
D
.,
2009
, “
The Application of Passive Flow Control to Bileaflet Mechanical Heart Valve Leakage Jets
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta.
17.
Simon
,
H. A.
,
Ge
,
L.
,
Sotiropoulos
,
F.
, and
Yoganathan
,
A. P.
,
2010
, “
Simulation of the Three-Dimensional Hinge Flow Fields of a Bileaflet Mechanical Heart Valve under Aortic Conditions
,”
Ann. Biomed. Eng.
,
38
(
3
), pp.
841
853
.10.1007/s10439-009-9857-0
18.
Simon
,
H. A.
,
2009
, “
Numerical Simulations of the Micro Flow Field in the Hinge Region of Bileaflet Mechanical Heart Valves
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta.
19.
Yun
,
B. M.
,
Wu
,
J. S.
,
Simon
,
H. A.
,
Arjunon
,
S.
,
Sotiropoulos
,
F.
,
Aidun
,
C. K.
, and
Yoganathan
,
A. P.
,
2012
, “
A Numerical Investigation of Blood Damage in the Hinge Area of Aortic Bileaflet Mechanical Heart Valves During the Leakage Phase
,”
Ann. Biomed. Eng.
,
40
(
7
), pp.
1468
1485
.10.1007/s10439-011-0502-3
20.
Keane
,
R. D.
, and
Adrian
,
R. J.
,
1992
, “
Theory of Cross-Correlation Analysis of Piv Images
,”
Appl. Sci. Res.
,
49
(
3
), pp.
191
215
.10.1007/BF00384623
21.
Vennemann
,
P.
,
Kiger
,
K. T.
,
Lindken
,
R.
,
Groenendijk
,
B. C. W.
,
Stekelenburg-De Vos
,
S.
,
Hagen
,
T. L. M. T.
,
Ursem
,
N. T. C.
,
Poelmann
,
R. E.
,
Westerweel
,
J.
, and
Hierck
,
B. P.
,
2006
, “
In Vivo Micro Particle Image Velocimetry Measurements of Blood-Plasma in the Embryonic Avian Heart
,”
J. Biomech.
,
39
(
7
), pp.
1191
1200
.10.1016/j.jbiomech.2005.03.015
22.
Leo
,
H.-L.
,
2005
, “
An in Vitro Investigation of the Flow Fields through Bileaflet and Polymeric Prosthetic Heart Valves
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta.
23.
Sallam
,
A. M.
, and
Hwang
,
N. H.
,
1984
, “
Human Red Blood Cell Hemolysis in a Turbulent Shear Flow: Contribution of Reynolds Shear Stresses
,”
Biorheology
,
21
(
6
), pp.
783
797
.
24.
Saikrishnan
,
N.
,
Yap
,
C. H.
,
Milligan
,
N. C.
,
Vasilyev
,
N. V.
, and
Yoganathan
,
A. P.
,
2012
, “
In Vitro Characterization of Bicuspid Aortic Valve Hemodynamics Using Particle Image Velocimetry
,”
Ann. Biomed. Eng.
,
40
(
8
), pp.
1760
1775
.10.1007/s10439-012-0527-2
25.
Yap
,
C. H.
,
Saikrishnan
,
N.
,
Tamilselvan
,
G.
,
Vasilyev
,
N.
, and
Yoganathan
,
A. P.
,
2012
, “
The Congenital Bicuspid Aortic Valve Can Experience High-Frequency Unsteady Shear Stresses on Its Leaflet Surface
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
303
(
6
), pp.
H721
H731
.
26.
Ellis
,
J. T.
,
1999
, “
An in Vitro Investigation of the Leakage and Hinge Flow Fields Through Bileaflet Mechanical Heart Valves and Their Relevance to Thrombogenesis
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta.
27.
Simon
,
H. A.
,
Dasi
,
L. P.
,
Leo
,
H. L.
, and
Yoganathan
,
A. P.
,
2007
, “
Spatio-Temporal Flow Analysis in Bileaflet Heart Valve Hinge Regions: Potential Analysis for Blood Element Damage
,”
Ann. Biomed. Eng.
,
35
(
8
), pp.
1333
1346
.10.1007/s10439-007-9302-1
28.
Dasi
,
L. P.
,
Murphy
,
D. W.
,
Glezer
,
A.
, and
Yoganathan
,
A. P.
,
2008
, “
Passive Flow Control of Bileaflet Mechanical Heart Valve Leakage Flow
,”
J. Biomech.
,
41
(
6
), pp.
1166
1173
.10.1016/j.jbiomech.2008.01.024
29.
Manning
,
K. B.
,
Kini
,
V.
,
Fontaine
,
A. A.
,
Deutsch
,
S.
, and
Tarbell
,
J. M.
,
2003
, “
Regurgitant Flow Field Characteristics of the St. Jude Bileaflet Mechanical Heart Valve under Physiologic Pulsatile Flow Using Particle Image Velocimetry
,”
Artif. Organs
,
27
(
9
), pp.
840
846
.10.1046/j.1525-1594.2003.07194.x
30.
Dumont
,
K.
,
Vierendeels
,
J.
,
Kaminsky
,
R.
,
Van Nooten
,
G.
,
Verdonck
,
P.
, and
Bluestein
,
D.
,
2007
, “
Comparison of the Hemodynamic and Thrombogenic Performance of Two Bileaflet Mechanical Heart Valves Using a Cfd/Fsi Model
,”
ASME J. Biomech. Eng.
,
129
(
4
), pp.
558
565
.10.1115/1.2746378
You do not currently have access to this content.