Biomaterial substrates composed of semi-aligned electrospun fibers are attractive supports for the regeneration of connective tissues because the fibers are durable under cyclic tensile loads and can guide cell adhesion, orientation, and gene expression. Previous studies on supported electrospun substrates have shown that both fiber diameter and mechanical deformation can independently influence cell morphology and gene expression. However, no studies have examined the effect of mechanical deformation and fiber diameter on unsupported meshes. Semi-aligned large (1.75 μm) and small (0.60 μm) diameter fiber meshes were prepared from degradable elastomeric poly(esterurethane urea) (PEUUR) meshes and characterized by tensile testing and scanning electron microscopy (SEM). Next, unsupported meshes were aligned between custom grips (with the stretch axis oriented parallel to axis of fiber alignment), seeded with C3H10T1/2 cells, and subjected to a static load (50 mN, adjusted daily), a cyclic load (4% strain at 0.25 Hz for 30 min, followed by a static tensile loading of 50 mN, daily), or no load. After 3 days of mechanical stimulation, confocal imaging was used to characterize cell shape, while measurements of deoxyribonucleic acid (DNA) content and messenger ribonucleic acid (mRNA) expression were used to characterize cell retention on unsupported meshes and expression of the connective tissue phenotype. Mechanical testing confirmed that these materials deform elastically to at least 10%. Cells adhered to unsupported meshes under all conditions and aligned with the direction of fiber orientation. Application of static and cyclic loads increased cell alignment. Cell density and mRNA expression of connective tissue proteins were not statistically different between experimental groups. However, on large diameter fiber meshes, static loading slightly elevated tenomodulin expression relative to the no load group, and tenascin-C and tenomodulin expression relative to the cyclic load group. These results demonstrate the feasibility of maintaining cell adhesion and alignment on semi-aligned fibrous elastomeric substrates under different mechanical conditions. The study confirms that cell morphology is sensitive to the mechanical environment and suggests that expression of select connective tissue genes may be enhanced on large diameter fiber meshes under static tensile loads.
Skip Nav Destination
Article navigation
July 2015
Research-Article
Static and Cyclic Mechanical Loading of Mesenchymal Stem Cells on Elastomeric, Electrospun Polyurethane Meshes
Robyn D. Cardwell,
Robyn D. Cardwell
Department of Biomedical Engineering,
Virginia Tech
,Blacksburg, VA 24061
Search for other works by this author on:
Jonathan A. Kluge,
Jonathan A. Kluge
Department of Biomedical Engineering,
Tufts University
,Medford, MA 02155
Search for other works by this author on:
Patrick S. Thayer,
Patrick S. Thayer
Department of Biomedical Engineering,
Virginia Tech
,Blacksburg, VA 24061
Search for other works by this author on:
Scott A. Guelcher,
Scott A. Guelcher
Chemical and Biomolecular Engineering,
Vanderbilt University
,Nashville, TN 37235
Search for other works by this author on:
Linda A. Dahlgren,
Linda A. Dahlgren
Large Animal Clinical Sciences,
Virginia-Maryland
Virginia-Maryland
Regional College of Veterinary Medicine
,Blacksburg, VA 24061
Search for other works by this author on:
David L. Kaplan,
David L. Kaplan
Department of Biomedical Engineering,
Tufts University
,Medford, MA 02155
Search for other works by this author on:
Aaron S. Goldstein
Aaron S. Goldstein
1
Department of Biomedical Engineering,
Virginia Tech
,Blacksburg, VA 24061
1Corresponding author.
Search for other works by this author on:
Robyn D. Cardwell
Department of Biomedical Engineering,
Virginia Tech
,Blacksburg, VA 24061
Jonathan A. Kluge
Department of Biomedical Engineering,
Tufts University
,Medford, MA 02155
Patrick S. Thayer
Department of Biomedical Engineering,
Virginia Tech
,Blacksburg, VA 24061
Scott A. Guelcher
Chemical and Biomolecular Engineering,
Vanderbilt University
,Nashville, TN 37235
Linda A. Dahlgren
Large Animal Clinical Sciences,
Virginia-Maryland
Virginia-Maryland
Regional College of Veterinary Medicine
,Blacksburg, VA 24061
David L. Kaplan
Department of Biomedical Engineering,
Tufts University
,Medford, MA 02155
Aaron S. Goldstein
Department of Biomedical Engineering,
Virginia Tech
,Blacksburg, VA 24061
1Corresponding author.
Manuscript received May 30, 2014; final manuscript received April 14, 2015; published online June 3, 2015. Assoc. Editor: Carlijn V. C. Bouten.
J Biomech Eng. Jul 2015, 137(7): 071010 (8 pages)
Published Online: July 1, 2015
Article history
Received:
May 30, 2014
Revision Received:
April 14, 2015
Online:
June 3, 2015
Citation
Cardwell, R. D., Kluge, J. A., Thayer, P. S., Guelcher, S. A., Dahlgren, L. A., Kaplan, D. L., and Goldstein, A. S. (July 1, 2015). "Static and Cyclic Mechanical Loading of Mesenchymal Stem Cells on Elastomeric, Electrospun Polyurethane Meshes." ASME. J Biomech Eng. July 2015; 137(7): 071010. https://doi.org/10.1115/1.4030404
Download citation file:
Get Email Alerts
Cited By
In Memoriam: Shmuel Einav, 1942–2022
J Biomech Eng (August 2022)
A Review of Head Injury Metrics Used in Automotive Safety and Sports Protective Equipment
J Biomech Eng (November 2022)
Related Articles
Microstructure and Mechanical Property of Glutaraldehyde-Treated Porcine Pulmonary Ligament
J Biomech Eng (June,2016)
Bioactive Magnetoelastic Materials as Coatings for Implantable Biomaterials
J. Med. Devices (June,2009)
Mechanisms of Strain-Mediated Mesenchymal Stem Cell Apoptosis
J Biomech Eng (December,2008)
Related Proceedings Papers
Related Chapters
Bioinformatic Analysis of the Malay Peninsular Macaca Fascicularis Based on Cytochrome C Oxidase I Sequences
International Conference on Computer Research and Development, 5th (ICCRD 2013)
Conclusion
Biopolymers Based Micro- and Nano-Materials
Introduction and Scope
High Frequency Piezo-Composite Micromachined Ultrasound Transducer Array Technology for Biomedical Imaging