The study of the knee natural motion, namely the unresisted motion that the knee exhibits in the absence of external loads, provides insights into the physiology of this articulation. The natural motion represents the baseline condition upon which deformations of its passive structures (i.e., ligaments and cartilage) take place when loads are applied. Moreover, during natural motion, the strain energy density stored within ligaments and cartilage is minimized. This reduces the chance of microdamage occurrences and the corresponding metabolic cost for tissue repairing. The study of the knee natural motion is thus fundamental in understanding the joint physiology. This paper shows that the line of action of resultant forces of all the knee constraints provided by the passive structures must intersect the instantaneous helical axis (IHA) to make the knee natural motion possible. In other words, the lines of action of all these constraints must cross the same line at each flexion angle to guarantee the natural motion of the joint. This geometrical property is first proven theoretically and then verified in four in vitro and one in vivo experiments. The geometrical characterization of the knee natural motion presented in this study provides a fundamental property that must be satisfied to allow the correct joint mobility. The knowledge of this property may thus allow the definition of better models, treatments, and devices.

References

1.
Wilson
,
D.
, and
O'Connor
,
J.
,
1997
, “
A Three-Dimensional Geometric Model of the Knee for the Study of Joint Forces in Gait
,”
Gait Posture
,
5
(
2
), pp.
108
115
.
2.
Wilson
,
D.
,
Feikes
,
J.
,
Zavatsky
,
A.
, and
O'Connor
,
J.
,
2000
, “
The Components of Passive Knee Movement Are Coupled to Flexion Angle
,”
J. Biomech.
,
33
(
4
), pp.
465
473
.
3.
Forlani
,
M.
,
Sancisi
,
N.
,
Conconi
,
M.
, and
Parenti-Castelli
,
V.
,
2016
, “
A New Test Rig for Static and Dynamic Evaluation of Knee Motion Based on a Cable-Driven Parallel Manipulator Loading System
,”
Meccanica
,
51
(
7
), pp.
1571
1581
.
4.
Wilson
,
D. R.
,
Feikes
,
J. D.
, and
O'Connor
,
J. J.
,
1998
, “
Ligaments and Articular Contact Guide Passive Knee Flexion
,”
J. Biomech.
,
31
(
12
), pp.
1127
1136
.
5.
Belvedere
,
C.
,
Ensini
,
A.
,
Feliciangeli
,
A.
,
Cenni
,
F.
,
D'Angeli
,
V.
,
Giannini
,
S.
, and
Leardini
,
A.
,
2012
, “
Geometrical Changes of Knee Ligaments and Patellar Tendon During Passive Flexion
,”
J. Biomech.
,
45
(
11
), pp.
1886
1892
.
6.
Conconi
,
M.
,
Sancisi
,
N.
, and
Parenti-Castelli
,
V.
,
2018
, “
Subject-Specific Model of Knee Natural Motion: A Non-Invasive Approach
,”
Advances in Robot Kinematics
,
J.
Lenarcic
and
J.
Merlet
, eds., Springer, Cham, Switzerland, pp.
261
269
.
7.
Carter
,
D. R.
,
1987
, “
Mechanical Loading History and Skeletal Biology
,”
J. Biomech.
,
20
(
11–12
), pp.
1095
1109
.
8.
Kapandji
,
I. A.
,
2010
,
Physiology of the Joints
,
Churchill Livingstone
, London.
9.
Herder
,
J.
,
2001
, “
Energy-Free Systems. Theory, Conception and Design of Statically Balanced Spring Mechanisms
,” Ph.D. thesis, Delft University of Technology, Delft, The Netherlands.
10.
Deepak
,
S.
, and
Ananthasuresh
,
G.
,
2012
, “
Perfect Static Balance of Linkages by Addition of Springs but Not Auxiliary Bodies
,”
ASME J. Mech. Rob.
,
4
(
2
), p.
021014
.
11.
Fujie
,
H.
, and
Imade
,
K.
,
2015
, “
Effects of Low Tangential Permeability in the Superficial Layer on the Frictional Property of Articular Cartilage
,”
Biosurf. Biotribology
,
1
(
2
), pp.
124
129
.
12.
Hunt
,
K.
,
1978
,
Kinematic Geometry of Mechanisms
,
Clarendon Press
,
Oxford, UK
.
13.
Parenti-Castelli
,
V.
, and
Di Gregorio
,
R.
,
2000
, “
Parallel Mechanisms Applied to the Human Knee Passive Motion Simulation
,”
Seventh ARK International Symposium on Advances in Robot Kinematics
,
J.
Lenarcic
and
M.
Stanisic
, eds., Springer, Dordrecht, The Netherlands, pp.
333
344
.
14.
Ottoboni
,
A.
,
Parenti-Castelli
,
V.
,
Sancisi
,
N.
,
Belvedere
,
C.
, and
Leardini
,
A.
,
2010
, “
Articular Surface Approximation in Equivalent Spatial Parallel Mechanism Models of the Human Knee Joint: An Experiment-Based Assessment
,”
Proc. Inst. Mech. Eng., Part H
,
224
(
9
), pp.
1121
1132
.
15.
Nardini
,
F.
,
Sancisi
,
N.
,
Belvedere
,
C.
,
Conconi
,
M.
,
Leardini
,
A.
, and
Parenti-Castelli
,
V.
,
2016
, “
Definition of a Subject-Specific Model of the Knee In Vivo
,”
Gait Posture
,
49
, p.
S6
.
16.
Blankevoort
,
L.
,
Huiskes
,
R.
, and
de Lange
,
A.
,
1990
, “
Helical Axes of Passive Knee Joint Motions
,”
J. Biomech.
,
23
(
12
), pp.
1219
1229
.
17.
Sancisi
,
N.
, and
Parenti-Castelli
,
V.
,
2010
, “
A 1-DOF Parallel Spherical Wrist for the Modelling of the Knee Passive Motion
,”
Mech. Mach. Theory
,
45
(
4
), pp.
658
665
.
18.
Sancisi
,
N.
,
Zannoli
,
D.
,
Parenti-Castelli
,
V.
,
Belvedere
,
C.
, and
Leardini
,
A.
,
2011
, “
A One-Degree-of-Freedom Spherical Mechanism for Human Knee Joint Modelling
,”
Proc. Inst. Mech. Eng., Part H
,
225
(
8
), pp.
725
735
.
19.
Hollister
,
A. M.
,
Jatana
,
S.
,
Singh
,
A. K.
,
Sullivan
,
W. W.
, and
Lupichuk
,
A. G.
,
1993
, “
The Axes of Rotation of the Knee
,”
Clin. Orthop. Relat. Res.
,
290
, pp.
259
268
.https://journals.lww.com/clinorthop/Abstract/1993/05000/The_Axes_of_Rotation_of_the_Knee.33.aspx#pdf-link
20.
Churchill
,
D. L.
,
Incavo
,
S. J.
,
Johnson
,
C. C.
, and
Beynnon
,
B. D.
,
1998
, “
The Transepicondylar Axis Approximates the Optimal Flexion Axis of the Knee
,”
Clin. Orthop. Relat. Res.
,
2
(356), pp.
111
118
.https://www.ncbi.nlm.nih.gov/pubmed/9917674
21.
Kim
,
W.
, and
Kohles
,
S. S.
,
2012
, “
A Reciprocal Connection Factor for Assessing Knee-Joint Function
,”
Comput. Methods Biomech. Biomed. Eng.
,
15
(
9
), pp.
911
917
.
22.
Lipkin
,
H.
, and
Duffy
,
J.
,
1988
, “
Hybrid Twist and Wrench Control for a Robotic Manipulator
,”
ASME J. Mech., Transm., Autom. Des.
,
110
(
2
), pp.
138
144
.
23.
Blankevoort
,
L.
,
Huiskes
,
R.
, and
De Lange
,
A.
,
1988
, “
The Envelope of Passive Knee Joint Motion
,”
J. Biomech.
,
21
(
9
), pp.
705
720
.
24.
Fregly
,
B. J.
,
Rahman
,
H. A.
, and
Banks
,
S. A.
,
2005
, “
Theoretical Accuracy of Model-Based Shape Matching for Measuring Natural Knee Kinematics With Single-Plane Fluoroscopy
,”
ASME J. Biomech. Eng.
,
127
(
4
), pp.
692
699
.
25.
Tsai
,
L.
,
1999
,
Robot Analysis: The Mechanics of Serial and Parallel Manipulators
,
Wiley
, Hoboken, NJ.
26.
Braz
,
P.
, and
Silva
,
W.
,
2010
, “
Meniscus Morphometric Study in Humans
,”
J. Morphol. Sci.
,
27
(
2
), pp.
62
66
.https://www.researchgate.net/publication/288608129_Meniscus_morphometric_study_in_humans
27.
Johnson
,
K.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
28.
Anderson
,
D. D.
,
Iyer
,
K. S.
,
Segal
,
N. A.
,
Lynch
,
J. A.
, and
Brown
,
T. D.
,
2010
, “
Implementation of Discrete Element Analysis for Subject-Specific, Population-Wide Investigations of Habitual Contact Stress Exposure
,”
J. Appl. Biomech.
,
26
(
2
), pp.
215
223
.
29.
Abraham
,
C. L.
,
Maas
,
S. A.
,
Weiss
,
J. A.
,
Ellis
,
B. J.
,
Peters
,
C. L.
, and
Anderson
,
A. E.
,
2013
, “
A New Discrete Element Analysis Method for Predicting Hip Joint Contact Stresses
,”
J. Biomech.
,
46
(
6
), pp.
1121
1127
.
30.
Kern
,
A. M.
, and
Anderson
,
D. D.
,
2015
, “
Expedited Patient-Specific Assessment of Contact Stress Exposure in the Ankle Joint Following Definitive Articular Fracture Reduction
,”
J. Biomech.
,
48
(
12
), pp.
3427
3432
.
31.
Iwasaki
,
N.
,
Genda
,
E.
,
Barrance
,
P. J.
,
Minami
,
A.
,
Kaneda
,
K.
, and
Chao
,
E. Y.
,
1998
, “
Biomechanical Analysis of Limited Intercarpal Fusion for the Treatment of Kienböck's Disease: A Three-Dimensional Theoretical Study
,”
J. Orthop. Res.
,
16
(
2
), pp.
256
263
.
32.
Marquez-Florez
,
K.
,
Vergara-Amador
,
E.
,
de Las Casas
,
E. B.
, and
Garzon-Alvarado
,
D. A.
,
2015
, “
Theoretical Distribution of Load in the Radius and Ulna Carpal Joint
,”
Comput. Biol. Med.
,
60
, pp.
100
106
.
33.
Rajendran
,
K.
,
1985
, “
Mechanism of Locking at the Knee Joint
,”
J. Anat.
,
143
, pp.
189
194
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1166437/pdf/janat00190-0184.pdf
34.
Tersi
,
L.
,
Barre
,
A.
,
Fantozzi
,
S.
, and
Stagni
,
R.
,
2013
, “
In Vitro Quantification of the Performance of Model-Based Mono-Planar and Bi-Planar Fluoroscopy for 3D Joint Kinematics Estimation
,”
Med. Biol. Eng. Comput.
,
51
(
3
), pp.
257
265
.
35.
Conconi
,
M.
, and
Parenti-Castelli
,
V.
,
2014
, “
A Sound and Efficient Measure of Joint Congruence
,”
Proc. Inst. Mech. Eng., Part H
,
228
(
9
), pp.
935
941
.
36.
Gasparutto
,
X.
,
Sancisi
,
N.
,
Jacquelin
,
E.
,
Parenti-Castelli
,
V.
, and
Dumas
,
R.
,
2015
, “
Validation of a Multi-Body Optimization With Knee Kinematic Models Including Ligament Constraints
,”
J. Biomech.
,
48
(
6
), pp.
1141
1146
.
37.
Sancisi
,
N.
, and
Parenti-Castelli
,
V.
,
2011
, “
On the Role of Ligaments in the Guidance of the Human Knee Passive Motion
,”
Proc. EUROMECH Colloq.
,
511
, pp.
1
9
.
38.
Wang
,
C. J.
, and
Walker
,
P. S.
,
1973
, “
The Effects of Flexion and Rotation on the Length Patterns of the Ligaments of the Knee
,”
J. Biomech.
,
6
(
6
), pp.
587
596
.
39.
Rovick
,
J. S.
,
Reuben
,
J. D.
,
Schrager
,
R. J.
, and
Walker
,
P. S.
,
1991
, “
Relation Between Knee Motion and Ligament Length Patterns
,”
Clin. Biomech. (Bristol, Avon)
,
6
(
4
), pp.
213
220
.
40.
Victor
,
J.
,
Wong
,
P.
,
Witvrouw
,
E.
,
Sloten
,
J. V.
, and
Bellemans
,
J.
,
2009
, “
How Isometric Are the Medial Patellofemoral, Superficial Medial Collateral, and Lateral Collateral Ligaments of the Knee?
,”
Am. J. Sports Med.
,
37
(
10
), pp.
2028
2036
.
41.
Andersen
,
M. S.
,
Benoit
,
D. L.
,
Damsgaard
,
M.
,
Ramsey
,
D. K.
, and
Rasmussen
,
J.
,
2010
, “
Do Kinematic Models Reduce the Effects of Soft Tissue Artefacts in Skin Marker-Based Motion Analysis? An In Vivo Study of Knee Kinematics
,”
J. Biomech.
,
43
(
2
), pp.
268
273
.
42.
Clément
,
J.
,
Dumas
,
R.
,
Hagemeister
,
N.
, and
De Guise
,
J. A.
,
2015
, “
Soft Tissue Artifact Compensation in Knee Kinematics by Multi-Body Optimization: Performance of Subject-Specific Knee Joint Models
,”
J. Biomech.
,
48
(
14
), pp.
3796
3802
.
43.
Martelli
,
S.
,
Sancisi
,
N.
,
Conconi
,
M.
,
Parenti-Castelli
,
V.
, and
Reynolds
,
K.
,
2018
, “
Sensitivity of Musculoskeletal Model to Planar Simplification of Tibiofemoral Motion
,”
Eighth World Congress of Biomechanics
(
WCB
), Dublin, Ireland, July 8–12, Paper No. O1495.https://app.oxfordabstracts.com/stages/123/programme-builder/submission/16938?backHref=/events/123/sessions/222
44.
Leardini
,
A.
,
Belvedere
,
B.
,
Nardini
,
F.
,
Sancisi
,
N.
,
Conconi
,
M.
, and
Parenti-Castelli
,
V.
,
2017
, “
Kinematic Models of Lower Limb Joints for Musculo-Skeletal Modelling and Optimization in Gait Analysis
,”
J. Biomech.
,
62
(
6
), pp.
77
86
.https://www.sciencedirect.com/science/article/pii/S0021929017302403
45.
Brito da Luz
,
S.
,
Modenese
,
L.
,
Sancisi
,
N.
,
Mills
,
P. M.
,
Kennedy
,
B.
,
Beck
,
B. R.
, and
Lloyd
,
D. G.
,
2017
, “
Feasibility of Using MRIs to Create Subject-Specific Parallel-Mechanism Joint Models
,”
J. Biomech.
,
28
(
53
), pp.
45
55
.https://www.sciencedirect.com/science/article/pii/S0021929016313112
46.
Leardini
,
A.
,
O'Connor
,
J.
,
Catani
,
F.
, and
Giannini
,
S.
,
1999
, “
Kinematics of the Human Ankle Complex in Passive Flexion; A Single Degree of Freedom System
,”
J. Biomech.
,
32
(
2
), pp.
111
118
.
47.
Conconi
,
M.
,
Leardini
,
A.
, and
Parenti-Castelli
,
V.
,
2015
, “
Joint Kinematics From Functional Adaptation: A Validation on the Tibio-Talar Articulation
,”
J. Biomech.
,
48
(
12
), pp.
2960
2967
.
48.
Sancisi
,
N.
,
Baldisserri
,
B.
,
Parenti-Castelli
,
V.
,
Belvedere
,
C.
, and
Leardini
,
A.
,
2014
, “
One-Degree-of-Freedom Spherical Model for the Passive Motion of the Human Ankle Joint
,”
Med. Biol. Eng. Comput.
,
52
(
4
), pp.
363
373
.
You do not currently have access to this content.