Multifidus function is important for active stabilization of the spine, but it can be compromised in patients with chronic low back pain and other spine pathologies. Force production and strength of back muscles are often evaluated using isometric or isokinetic tests, which lack the ability to quantify multifidi contribution independent of the erector spinae and adjacent hip musculature. The objective of this study is to evaluate localized force production capability in multifidus muscle using ultrasound shear wave elastography (SWE) in healthy individuals. Three different body positions were considered: lying prone, sitting up, and sitting up with the right arm lifted. These positions were chosen to progressively increase multifidus contraction and to minimize body motion during measurements. Shear modulus was measured at the superficial and deeper layers of the multifidus. Repeatability and possible sources of error of the shear modulus measurements were analyzed. Multifidus shear modulus (median (interquartile range)) increased from prone, i.e., 16.15 (6.69) kPa, to sitting up, i.e., 27.28 (15.72) kPa, to sitting up with the right arm lifted position, i.e., 45.02 (25.27) kPa. Multifidi shear modulus in the deeper layer of the multifidi was lower than the superficial layer, suggesting lower muscle contraction. Intraclass correlation coefficients (ICCs) for evaluation of shear modulus by muscle layer were found to be excellent (ICC = 0.76–0.80). Results suggest that the proposed protocol could quantify local changes in spinal muscle function in healthy adults; further research in patients with spine pathology is warranted.

References

1.
Sions
,
J. M.
,
Velasco
,
T. O.
,
Teyhen
,
D. S.
, and
Hicks
,
G. E.
,
2015
, “
Reliability of Ultrasound Imaging for the Assessment of Lumbar Multifidi Thickness in Older Adults With Chronic Low Back Pain
,”
J. Geriatr. Phys. Ther.
,
38
(
1
), pp.
33
39
.
2.
Gibbon
,
K. C.
,
Debuse
,
D.
,
Hibbs
,
A.
, and
Caplan
,
N.
,
2017
, “
Reliability and Precision of Sonography of the Lumbar Multifidus and Transversus Abdominis During Dynamic Activities
,”
J. Ultrasound Med.
,
36
(
3
), pp.
571
581
.
3.
Goubert
,
D.
,
De Pauw
,
R.
,
Meeus
,
M.
,
Willems
,
T.
,
Cagnie
,
B.
,
Schouppe
,
S.
,
Van Oosterwijck
,
J.
,
Dhondt
,
E.
, and
Danneels
,
L.
,
2017
, “
Lumbar Muscle Structure and Function in Chronic Versus Recurrent Low Back Pain: A Cross-Sectional Study
,”
Spine J.
,
17
(
9
), pp.
1285
1296
.
4.
Sions
,
J. M.
,
Smith
,
A. C.
,
Hicks
,
G. E.
, and
Elliott
,
J. M.
,
2016
, “
Trunk Muscle Size and Composition Assessment in Older Adults With Chronic Low Back Pain: An Intra-Examiner and Inter-Examiner Reliability Study
,”
Pain Med.
,
17
(
8
), pp.
1436
1446
.
5.
Rahmani
,
N.
,
Kiani
,
A.
,
Mohseni-Bandpei
,
M. A.
, and
Abdollahi
,
I.
,
2018
, “
Multifidus Muscle Size in Adolescents With and Without Back Pain Using Ultrasonography
,”
J. Bodywork Mov. Ther.
,
22
(
1
), pp.
147
151
.
6.
Hodges
,
P. W.
,
James
,
G.
,
Blomster
,
L.
,
Hall
,
L.
,
Schmid
,
A.
,
Shu
,
C.
,
Little
,
C.
, and
Melrose
,
J.
,
2015
, “
Multifidus Muscle Changes After Back Injury Are Characterized by Structural Remodeling of Muscle, Adipose and Connective Tissue, but Not Muscle Atrophy
,”
Spine
,
40
(
14
), pp.
1057
1071
.
7.
Storheim
,
K.
,
Berg
,
L.
,
Hellum
,
C.
,
Gjertsen
,
Ø.
,
Neckelmann
,
G.
,
Espeland
,
A.
, and
Keller
,
A.
,
2017
, “
Fat in the Lumbar Multifidus Muscles-Predictive Value and Change Following Disc Prosthesis Surgery and Multidisciplinary Rehabilitation in Patients With Chronic Low Back Pain and Degenerative Disc: 2-Year Follow-Up of a Randomized Trial
,”
BMC Musculoskeletal Disord.
,
18
(
1
), p.
145
.
8.
Addison
,
O.
,
Marcus
,
R. L.
,
LaStayo
,
P. C.
, and
Ryan
,
A. S.
,
2014
, “
Intermuscular Fat: A Review of the Consequences and Causes
,”
Int. J. Endocrinol.
,
2014
, p.
309570
.
9.
Ward
,
S. R.
,
Kim
,
C. W.
,
Eng
,
C. M.
,
Gottschalk
,
L. J.
, IV
,
Tomiya
,
A.
,
Garfin
,
S. R.
, and
Lieber
,
R. L.
,
2009
, “
Architectural Analysis and Intraoperative Measurements Demonstrate the Unique Design of the Multifidus Muscle for Lumbar Spine Stability
,”
J. Bone Jt. Surg., Am. Vol.
,
91
(
1
), p.
176
.
10.
Moseley
,
G. L.
,
Hodges
,
P. W.
, and
Gandevia
,
S. C.
,
2002
, “
Deep and Superficial Fibers of the Lumbar Multifidus Muscle Are Differentially Active During Voluntary Arm Movements
,”
Spine
,
27
(
2
), pp.
E29
E36
.
11.
Wallwork
,
T. L.
,
Hides
,
J. A.
, and
Stanton
,
W. R.
,
2007
, “
Intrarater and Interrater Reliability of Assessment of Lumbar Multifidus Muscle Thickness Using Rehabilitative Ultrasound Imaging
,”
J. Orthop. Sports Phys. Ther.
,
37
(
10
), pp.
608
612
.
12.
Stokes
,
M.
,
Hides
,
J.
,
Elliott
,
J.
,
Kiesel
,
K.
, and
Hodges
,
P.
,
2007
, “
Rehabilitative Ultrasound Imaging of the Posterior Paraspinal Muscles
,”
J. Orthop. Sports Phys. Ther.
,
37
(
10
), pp.
581
595
.
13.
Kiesel
,
K. B.
,
Uhl
,
T. L.
,
Underwood
,
F. B.
,
Rodd
,
D. W.
, and
Nitz
,
A. J.
,
2007
, “
Measurement of Lumbar Multifidus Muscle Contraction With Rehabilitative Ultrasound Imaging
,”
Man. Ther.
,
12
(
2
), pp.
161
166
.
14.
Whitehead
,
N.
,
Weerakkody
,
N.
,
Gregory
,
J.
,
Morgan
,
D.
, and
Proske
,
U.
,
2001
, “
Changes in Passive Tension of Muscle in Humans and Animals After Eccentric Exercise
,”
J. Physiol.
,
533
(
2
), pp.
593
604
.
15.
Todorov
,
P. T.
,
Nestorova
,
R.
, and
Batalov
,
A.
,
2018
, “
Diagnostic Value of Musculoskeletal Ultrasound in Patients With Low Back Pain–A Review of the Literature
,”
Med. Ultrasonography
,
1
(
1
), pp.
80
87
.
16.
Shair
,
E.
,
Ahmad
,
S.
,
Marhaban
,
M.
,
Mohd Tamrin
,
S.
, and
Abdullah
,
A.
,
2017
, “
EMG Processing Based Measures of Fatigue Assessment During Manual Lifting
,”
BioMed Res. Int.
,
2017
, p.
3937254
.
17.
Smith
,
L. H.
, and
Hargrove
,
L. J.
,
2013
, “
Comparison of Surface and Intramuscular EMG Pattern Recognition for Simultaneous Wrist/Hand Motion Classification
,”
35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(
EMBC
), Osaka, Japan, July 3–7, pp.
4223
4226
.
18.
Palmeri
,
M. L.
, and
Nightingale
,
K. R.
,
2011
, “
Acoustic Radiation Force-Based Elasticity Imaging Methods
,”
Interface Focus
,
1
(
4
) pp.
553
564
.
19.
Cortes
,
D. H.
,
Suydam
,
S. M.
,
Silbernagel
,
K. G.
,
Buchanan
,
T. S.
, and
Elliott
,
D. M.
,
2015
, “
Continuous Shear Wave Elastography: A New Method to Measure Viscoelastic Properties of Tendons In Vivo
,”
Ultrasound Med. Biol.
,
41
(
6
), pp.
1518
1529
.
20.
Song
,
P.
,
Urban
,
M. W.
,
Manduca
,
A.
,
Zhao
,
H.
,
Greenleaf
,
J. F.
, and
Chen
,
S.
,
2013
, “
Comb-Push Ultrasound Shear Elastography (CUSE) With Various Ultrasound Push Beams
,”
IEEE Trans. Med. Imaging
,
32
(
8
), pp.
1435
1447
.
21.
Nordez
,
A.
, and
Hug
,
F.
,
2010
, “
Muscle Shear Elastic Modulus Measured Using Supersonic Shear Imaging Is Highly Related to Muscle Activity Level
,”
J. Appl. Physiol.
,
108
(
5
), pp.
1389
1394
.
22.
Koo
,
T. K.
,
Guo
,
J.-Y.
,
Cohen
,
J. H.
, and
Parker
,
K. J.
,
2013
, “
Relationship Between Shear Elastic Modulus and Passive Muscle Force: An Ex-Vivo Study
,”
J. Biomech.
,
46
(
12
), pp.
2053
2059
.
23.
Bouillard
,
K.
,
Hug
,
F.
,
Guével
,
A.
, and
Nordez
,
A.
,
2012
, “
Shear Elastic Modulus Can Be Used to Estimate an Index of Individual Muscle Force During a Submaximal Isometric Fatiguing Contraction
,”
J. Appl. Physiol.
,
113
(
9
), pp.
1353
1361
.
24.
Hug
,
F.
,
Tucker
,
K.
,
Gennisson
,
J.-L.
,
Tanter
,
M.
, and
Nordez
,
A.
,
2015
, “
Elastography for Muscle Biomechanics: Toward the Estimation of Individual Muscle Force
,”
Exercise Sport Sci. Rev.
,
43
(
3
), pp.
125
133
.
25.
Eby
,
S. F.
,
Song
,
P.
,
Chen
,
S.
,
Chen
,
Q.
,
Greenleaf
,
J. F.
, and
An
,
K.-N.
,
2013
, “
Validation of Shear Wave Elastography in Skeletal Muscle
,”
J. Biomech.
,
46
(
14
), pp.
2381
2387
.
26.
Gennisson
,
J.-L.
,
Deffieux
,
T.
,
Macé
,
E.
,
Montaldo
,
G.
,
Fink
,
M.
, and
Tanter
,
M.
,
2010
, “
Viscoelastic and Anisotropic Mechanical Properties of In Vivo Muscle Tissue Assessed by Supersonic Shear Imaging
,”
Ultrasound Med. Biol.
,
36
(
5
), pp.
789
801
.
27.
Creze
,
M.
,
Nyangoh Timoh
,
K.
,
Gagey
,
O.
,
Rocher
,
L.
,
Bellin
,
M. F.
, and
Soubeyrand
,
M.
,
2017
, “
Feasibility Assessment of Shear Wave Elastography to Lumbar Back Muscles: A Radioanatomic Study
,”
Clin. Anat.
,
30
(
6
), pp.
774
780
.
28.
Moreau
,
B.
,
Vergari
,
C.
,
Gad
,
H.
,
Sandoz
,
B.
,
Skalli
,
W.
, and
Laporte
,
S.
,
2016
, “
Non-Invasive Assessment of Human Multifidus Muscle Stiffness Using Ultrasound Shear Wave Elastography: A Feasibility Study
,”
Proc. Inst. Mech. Eng., Part H
,
230
(
8
), pp.
809
814
.
29.
Bercoff
,
J.
,
Tanter
,
M.
, and
Fink
,
M.
,
2004
, “
Supersonic Shear Imaging: A New Technique for Soft Tissue Elasticity Mapping
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
,
51
(
4
), pp.
396
409
.
30.
Lin
,
C.-Y.
,
Sadeghi
,
S.
,
Bader
,
D. A.
, and
Cortes
,
D. H.
,
2017
, “
Ultrasound Shear Wave Elastography of the Elbow Ulnar Collateral Ligament: Reliability Test and a Preliminary Case Study in a Baseball Pitcher
,”
ASME J. Eng. Sci. Med. Diagn. Ther.
,
1
(
1
), p.
011004
.
31.
Sadeghi
,
S.
,
Lin
,
C.-Y.
,
Bader
,
D. A.
, and
Cortes
,
D. H.
,
2018
, “
Evaluating Changes in Shear Modulus of Elbow Ulnar Collateral Ligament in Overhead Throwing Athletes Over the Course of a Competitive Season
,”
ASME J. Eng. Sci. Med. Diagn. Ther.
,
1
(
4
), p.
041008
.
32.
Sadeghi
,
S.
,
Johnson
,
M.
,
Bader
,
D. A.
, and
Cortes
,
D. H.
,
2019
, “
The Shear Modulus of Lower-Leg Muscles Correlates to Intramuscular Pressure
,”
J. Biomech.
,
83
, pp.
190
196
.
33.
Sadeghi
,
S.
,
Lin
,
C.-Y.
, and
Cortes
,
D. H.
,
2019
, “
Narrowband Shear Wave Generation Using Sinusoidally Modulated Acoustic Radiation Force
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
,
66
(
2
), pp.
264
272
.
34.
Bates
,
D.
,
Mächler
,
M.
,
Bolker
,
B.
, and
Walker
,
S.
,
2015
, “
Fitting Linear Mixed-Effects Models Using lme4
,”
J. Stat. Software
,
67
(1) (epub).
35.
Dieterich
,
A. V.
,
Andrade
,
R. J.
,
Le Sant
,
G.
,
Falla
,
D.
,
Petzke
,
F.
,
Hug
,
F.
, and
Nordez
,
A.
,
2017
, “
Shear Wave Elastography Reveals Different Degrees of Passive and Active Stiffness of the Neck Extensor Muscles
,”
Eur. J. Appl. Physiol.
,
117
(
1
), pp.
171
178
.
36.
Walker
,
E.
, and
Nowacki
,
A. S.
,
2011
, “
Understanding Equivalence and Noninferiority Testing
,”
J. Gen. Int. Med.
,
26
(
2
), pp.
192
196
.
37.
Alis
,
D.
,
Durmaz
,
E. S. M.
,
Alis
,
C.
,
Erol
,
B. C.
,
Okur
,
B.
,
Kizilkilic
,
O.
, and
Mihmanli
,
I.
,
2018
, “
Shear Wave Elastography of the Lumbar Multifidus Muscle in Patients With Unilateral Lumbar Disk Herniation
,”
J. Ultrasound Med.
,
2018
, pp.
1
9
.
38.
Chan
,
S.-T.
,
Fung
,
P.-K.
,
Ng
,
N.-Y.
,
Ngan
,
T.-L.
,
Chong
,
M.-Y.
,
Tang
,
C.-N.
,
He
,
J.-F.
, and
Zheng
,
Y.-P.
,
2012
, “
Dynamic Changes of Elasticity, Cross-Sectional Area, and Fat Infiltration of Multifidus at Different Postures in Men With Chronic Low Back Pain
,”
Spine J.
,
12
(
5
), pp.
381
388
.
39.
Shin
,
H. J.
,
Kim
,
M.-J.
,
Kim
,
H. Y.
,
Roh
,
Y. H.
, and
Lee
,
M.-J.
,
2016
, “
Comparison of Shear Wave Velocities on Ultrasound Elastography Between Different Machines, Transducers, and Acquisition Depths: A Phantom Study
,”
Eur. Radiol.
,
26
(
10
), pp.
3361
3367
.
40.
Dillman
,
J. R.
,
Chen
,
S.
,
Davenport
,
M. S.
,
Zhao
,
H.
,
Urban
,
M. W.
,
Song
,
P.
,
Watcharotone
,
K.
, and
Carson
,
P. L.
,
2015
, “
Superficial Ultrasound Shear Wave Speed Measurements in Soft and Hard Elasticity Phantoms: Repeatability and Reproducibility Using Two Ultrasound Systems
,”
Pediatr. Radiol.
,
45
(
3
), pp.
376
385
.
41.
Mulabecirovic
,
A.
,
Vesterhus
,
M.
,
Gilja
,
O. H.
, and
Havre
,
R. F.
,
2016
, “
In Vitro Comparison of Five Different Elastography Systems for Clinical Applications, Using Strain and Shear Wave Technology
,”
Ultrasound Med. Biol.
,
42
(
11
), pp.
2572
2588
.
42.
Miyamoto
,
N.
,
Hirata
,
K.
,
Kanehisa
,
H.
, and
Yoshitake
,
Y.
,
2015
, “
Validity of Measurement of Shear Modulus by Ultrasound Shear Wave Elastography in Human Pennate Muscle
,”
PLoS One
,
10
(
4
), p.
e0124311
.
43.
Koo
,
T. K.
, and
Hug
,
F.
,
2015
, “
Factors That Influence Muscle Shear Modulus During Passive Stretch
,”
J. Biomech.
,
48
(
12
), pp.
3539
3542
.
44.
Sions
,
J. M.
,
Velasco
,
T. O.
,
Teyhen
,
D. S.
, and
Hicks
,
G. E.
,
2014
, “
Ultrasound Imaging: Intraexaminer and Interexaminer Reliability for Multifidus Muscle Thickness Assessment in Adults Aged 60 to 85 Years Versus Younger Adults
,”
J. Orthop. Sports Phys. Ther.
,
44
(
6
), pp.
425
434
.
45.
Sions
,
J. M.
,
Teyhen
,
D. S.
, and
Hicks
,
G. E.
,
2017
, “
Criterion Validity of Ultrasound Imaging: Assessment of Multifidi Cross-Sectional Area in Older Adults With and Without Chronic Low Back Pain
,”
J. Geriatr. Phys. Ther.
,
40
(
2
), pp.
74
79
.
46.
Koppenhaver
,
S. L.
,
Hebert
,
J. J.
,
Fritz
,
J. M.
,
Parent
,
E. C.
,
Teyhen
,
D. S.
, and
Magel
,
J. S.
,
2009
, “
Reliability of Rehabilitative Ultrasound Imaging of the Transversus Abdominis and Lumbar Multifidus Muscles
,”
Arch. Phys. Med. Rehabil.
,
90
(
1
), pp.
87
94
.
47.
Teyhen
,
D. S.
,
2007
, “
Rehabilitative Ultrasound Imaging: The Roadmap Ahead
,”
J. Orthop. Sports Phys. Ther.
,
37
(
8
), pp.
431
433
.
You do not currently have access to this content.