Abstract

A better understanding of how the shape and density of the shoulder vary among members of a population can help design more effective population-based orthopedic implants. The main objective of this study was to develop statistical shape models (SSMs) and statistical density models (SDMs) of the shoulder to describe the main modes of variability in the shape and density distributions of shoulder bones within a population in terms of principal components (PCs). These PC scores were analyzed, and significant correlations were observed between the shape and density distributions of the shoulder and demographics of the population, such as sex and age. Our results demonstrated that when the overall body sizes of male and female donors were matched, males still had, on average, larger scapulae and thicker humeral cortical bones. Moreover, we concluded that age has a weak but significant inverse effect on the density within the entire shoulder. Weak and moderate, but significant, correlations were also found between many modes of shape and density variations in the shoulder. Our results suggested that donors with bigger humeri have bigger scapulae and higher bone density of humeri corresponds with higher bone density in the scapulae. Finally, asymmetry, to some extent, was noted in the shape and density distributions of the contralateral bones of the shoulder. These results can be used to help guide the designs of population-based prosthesis components and pre-operative surgical planning.

References

1.
Barrett
,
W. P.
,
Franklin
,
J. L.
,
Jackins
,
S. E.
,
Wyss
,
C. R.
, and
Matsen
,
F. A.
, III
,
1987
, “
Total Shoulder Arthroplasty
,”
J. Bone Jt. Surg.
,
69
(
6
), pp.
865
872
.10.2106/00004623-198769060-00011
2.
Norris
,
T. R.
, and
Iannotti
,
J. P.
,
2002
, “
Functional Outcome After Shoulder Arthroplasty for Primary Osteoarthritis: A Multicenter Study
,”
J. Shoulder Elbow Surg.
,
11
(
2
), pp.
130
135
.10.1067/mse.2002.121146
3.
Goldberg
,
B. A.
,
Smith
,
K.
,
Jackins
,
S.
,
Campbell
,
B.
, and
Matsen
,
F. A.
,
2001
, “
The Magnitude and Durability of Functional Improvement After Total Shoulder Arthroplasty for Degenerative Joint Disease
,”
J. Shoulder Elbow Surg.
,
10
(
5
), pp.
464
469
.10.1067/mse.2001.117122
4.
Favard
,
L.
,
2013
, “
Revision of Total Shoulder Arthroplasty
,”
Orthop. Traumatol. Surg. Res.
,
99
(
1
), pp.
S12
S21
.10.1016/j.otsr.2012.11.010
5.
Alidousti
,
H.
,
Giles
,
J. W.
,
Emery
,
R. J. H.
, and
Jeffers
,
J.
,
2017
, “
Spatial Mapping of Humeral Head Bone Density
,”
J. Shoulder Elbow Surg.
,
26
(
9
), pp.
1653
1661
.10.1016/j.jse.2017.03.006
6.
Antuna
,
S. A.
,
Sperling
,
J. W.
,
Cofield
,
R. H.
, and
Rowland
,
C. M.
,
2001
, “
Glenoid Revision Surgery After Total Shoulder Arthroplasty
,”
J. Shoulder Elbow Surg.
,
10
(
3
), pp.
217
224
.10.1067/mse.2001.113961
7.
Razfar
,
N.
,
Reeves
,
J. M.
,
Langohr
,
D. G.
,
Willing
,
R.
,
Athwal
,
G. S.
, and
Johnson
,
J. A.
,
2016
, “
Comparison of Proximal Humeral Bone Stresses Between Stemless, Short Stem, and Standard Stem Length: A Finite Element Analysis
,”
J. Shoulder Elbow Surg.
,
25
(
7
), pp.
1076
1083
.10.1016/j.jse.2015.11.011
8.
Austman
,
R. L.
,
King
,
G. J. W.
, and
Dunning
,
C. E.
,
2011
, “
Bone Stresses Before and After Insertion of Two Commercially Available Distal Ulnar Implants Using Finite Element Analysis
,”
J. Orthop. Res.
,
29
(
9
), pp.
1418
1423
.10.1002/jor.21360
9.
Gross
,
S.
, and
Abel
,
E. W.
,
2001
, “
A Finite Element Analysis of Hollow Stemmed Hip Prostheses as a Means of Reducing Stress Shielding of the Femur
,”
J. Biomech.
,
34
(
8
), pp.
995
1003
.10.1016/S0021-9290(01)00072-0
10.
Arabnejad
,
S.
,
Johnston
,
B.
,
Tanzer
,
M.
, and
Pasini
,
D.
,
2017
, “
Fully Porous 3D Printed Titanium Femoral Stem to Reduce Stress-Shielding Following Total Hip Arthroplasty
,”
J. Orthop. Res.
,
35
(
8
), pp.
1774
1783
.10.1002/jor.23445
11.
Jacobson
,
A.
,
Gilot
,
G. J.
,
Hamilton
,
M. A.
,
Greene
,
A.
,
Flurin
,
P.-H.
,
Wright
,
T. W.
,
Zuckerman
,
J. D.
, and
Roche
,
C. P.
,
2015
, “
Glenohumeral Anatomic Study: A Comparison of Male and Female Shoulders With Similar Average Age and BMI
,”
Bull. NYU Hosp. Jt. Dis.
,
73
(
S1
), pp.
S68
S68
.https://www.researchgate.net/publication/289250966_Glenohumeral_Anatomic_Study_A_Comparison_of_Male_and_Female_Shoulders_with_Similar_Average_Age_and_BMI
12.
Robertson
,
D. D.
,
Yuan
,
J.
,
Bigliani
,
L. U.
,
Flatow
,
E. L.
, and
Yamaguchi
,
K.
,
2000
, “
Three-Dimensional Analysis of the Proximal Part of the Humerus: Relevance to Arthroplasty
,”
J. Bone Jt. Surg. Ser. A
,
82
(
11
), pp.
1594
1602
.10.2106/00004623-200011000-00013
13.
Barvencik
,
F.
,
Gebauer
,
M.
,
Beil
,
F. T.
,
Vettorazzi
,
E.
,
Mumme
,
M.
,
Rupprecht
,
M.
,
Pogoda
,
P.
,
Wegscheider
,
K.
,
Rueger
,
J. M.
,
Pueschel
,
K.
, and
Amling
,
M.
,
2010
, “
Age- and Sex-Related Changes of Humeral Head Microarchitecture: Histomorphometric Analysis of 60 Human Specimens
,”
J. Orthop. Res.
,
28
(
1
), pp.
18
26
.10.1002/jor.20957
14.
Tingart
,
M. J.
,
Apreleva
,
M.
,
von Stechow
,
D.
,
Zurakowski
,
D.
, and
Warner
,
J. J.
,
2003
, “
The Cortical Thickness of the Proximal Humeral Diaphysis Predicts Bone Mineral Density of the Proximal Humerus
,”
J. Bone Jt. Surg.
,
85-B
(
4
), pp.
611
617
.10.1302/0301-620X.85B4.12843
15.
Yamada
,
M.
,
Briot
,
J.
,
Pedrono
,
A.
,
Sans
,
N.
,
Mansat
,
P.
,
Mansat
,
M.
, and
Swider
,
P.
,
2007
, “
Age-and Gender-Related Distribution of Bone Tissue of Osteoporotic Humeral Head Using Computed Tomography
,”
J. Shoulder Elbow Surg.
,
16
(
5
), pp.
596
602
.10.1016/j.jse.2007.01.006
16.
Roosa
,
S. M. M.
,
Hurd
,
A. L.
,
Xu
,
H.
,
Fuchs
,
R. K.
, and
Warden
,
S. J.
,
2012
, “
Age-Related Changes in Proximal Humerus Bone Health in Healthy, White Males
,”
Osteoporos. Int.
,
23
(
12
), pp.
2775
2783
.10.1007/s00198-012-1893-1
17.
Kirchhoff
,
C.
,
Braunstein
,
V.
,
Milz
,
S.
,
Sprecher
,
C. M.
,
Kirchhoff
,
S.
,
Graw
,
M.
,
Imhoff
,
A. B.
, and
Hinterwimmer
,
S.
,
2012
, “
Age and Gender as Determinants of the Bone Quality of the Greater Tuberosity: A HR-PQCT Cadaver Study
,”
BMC Musculoskelet. Disord.
,
13
(
1
), p.
221
.10.1186/1471-2474-13-221
18.
Laval-Jeantet
,
A.-M.
,
Bergot
,
C.
,
Carroll
,
R.
, and
Garcia-Schaefer
,
F.
,
1983
, “
Cortical Bone Senescence and Mineral Bone Density of the Humerus
,”
Calcif. Tissue Int.
,
35
(
1
), pp.
268
272
.10.1007/BF02405044
19.
Lorenz
,
C.
, and
Krahnstöver
,
N.
,
2000
, “
Generation of Point-Based 3D Statistical Shape Models for Anatomical Objects
,”
Comput. Vision Image Understanding
,
77
(
2
), pp.
175
191
.10.1006/cviu.1999.0814
20.
Bredbenner
,
T. L.
,
Mason
,
R. L.
,
Havill
,
L. M.
,
Orwoll
,
E. S.
, and
Nicolella
,
D. P.
,
for the Osteoporotic Fractures in Men (MrOS) Study
2014
, “
Fracture Risk Predictions Based on Statistical Shape and Density Modeling of the Proximal Femur
,”
J. Bone Miner. Res.
,
29
(
9
), pp.
2090
2100
.10.1002/jbmr.2241
21.
Okada
,
T.
,
Shimada
,
R.
,
Hori
,
M.
,
Nakamoto
,
M.
,
Chen
,
Y. W.
,
Nakamura
,
H.
, and
Sato
,
Y.
,
2008
, “
Automated Segmentation of the Liver From 3D CT Images Using Probabilistic Atlas and Multilevel Statistical Shape Model
,”
Acad. Radiol.
,
15
(
11
), pp.
1390
1403
.10.1016/j.acra.2008.07.008
22.
Zhang
,
X.
,
Tian
,
J.
,
Deng
,
K.
,
Wu
,
Y.
, and
Li
,
X.
,
2010
, “
Automatic Liver Segmentation Using a Statistical Shape Model With Optimal Surface Detection
,”
IEEE Trans. Biomed. Eng.
,
57
(
10
), pp.
2622
2626
.10.1109/TBME.2010.2056369
23.
Lötjönen
,
J.
,
Kivistö
,
S.
,
Koikkalainen
,
J.
,
Smutek
,
D.
, and
Lauerma
,
K.
,
2004
, “
Statistical Shape Model of Atria, Ventricles and Epicardium From Short- and Long-Axis MR Images
,”
Med. Image Anal.
,
8
(
3
), pp.
371
386
.10.1016/j.media.2004.06.013
24.
Bai
,
W.
,
Shi
,
W.
,
de Marvao
,
A.
,
Dawes
,
T. J. W.
,
O'Regan
,
D. P.
,
Cook
,
S. A.
, and
Rueckert
,
D.
,
2015
, “
A Bi-Ventricular Cardiac Atlas Built From 1000+ High Resolution MR Images of Healthy Subjects and an Analysis of Shape and Motion
,”
Med. Image Anal.
,
26
(
1
), pp.
133
145
.10.1016/j.media.2015.08.009
25.
Tao
,
X.
,
Prince
,
J. L.
, and
Davatzikos
,
C.
,
2002
, “
Using a Statistical Shape Model to Extract Sulcal Curves on the Outer Cortex of the Human Brain
,”
IEEE Trans. Med. Imaging
,
21
(
5
), pp.
513
524
.10.1109/TMI.2002.1009387
26.
Shen
,
D.
,
Herskovits
,
E. H.
, and
Davatzikos
,
C.
,
2001
, “
An Adaptive-Focus Statistical Shape Model for Segmentation and Shape Modeling of 3-D Brain Structures
,”
IEEE Trans. Med. Imaging
,
20
(
4
), pp.
257
270
.10.1109/42.921475
27.
Rajamani
,
K. T.
,
Styner
,
M. A.
,
Talib
,
H.
,
Zheng
,
G.
,
Nolte
,
L. P.
, and
Ballester
,
M. A. G.
,
2007
, “
Statistical Deformable Bone Models for Robust 3D Surface Extrapolation From Sparse Data
,”
Med. Image Anal.
,
11
(
2
), pp.
99
109
.10.1016/j.media.2006.05.001
28.
Vanden Berghe
,
P.
,
Demol
,
J.
,
Gelaude
,
F.
, and
Vander Sloten
,
J.
,
2017
, “
Virtual Anatomical Reconstruction of Large Acetabular Bone Defects Using a Statistical Shape Model
,”
Comput. Methods Biomech. Biomed. Eng.
,
20
(
6
), pp.
577
586
.10.1080/10255842.2016.1265110
29.
Kainmueller
,
D.
,
Lamecker
,
H.
,
Zachow
,
S.
, and
Hege
,
H.-C.
,
2009
, “
An Articulated Statistical Shape Model for Accurate Hip Joint Segmentation
,”
Conference Proceedings, Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE Engineering in Medicine and Biology Society
, Minneapolis, MN, pp.
6345
6351
.10.1109/IEMBS.2009.5333269
30.
Bredbenner
,
T. L.
,
Eliason
,
T. D.
,
Potter
,
R. S.
,
Mason
,
R. L.
,
Havill
,
L. M.
, and
Nicolella
,
D. P.
,
2010
, “
Statistical Shape Modeling Describes Variation in Tibia and Femur Surface Geometry Between Control and Incidence Groups From the Osteoarthritis Initiative Database
,”
J. Biomech.
,
43
(
9
), pp.
1780
1786
.10.1016/j.jbiomech.2010.02.015
31.
Querol
,
L. B.
,
Büchler
,
P.
,
Rueckert
,
D.
,
Nolte
,
L. P.
, and
Ballester
,
M. Á. G.
,
2006
, “
Statistical Finite Element Model for Bone Shape and Biomechanical Properties
,”
International Conference on Medical Image Computing and Computer-Assisted Intervention
, Copenhagen, Denmark, Oct. 1–6, pp.
405
411
.10.1007/11866565_50
32.
Nicolella
,
D. P.
, and
Bredbenner
,
T. L.
,
2012
, “
Development of a Parametric Finite Element Model of the Proximal Femur Using Statistical Shape and Density Modelling
,”
Comput. Methods Biomech. Biomed. Eng.
,
15
(
2
), pp.
101
110
.10.1080/10255842.2010.515984
33.
Coogan
,
J. S.
,
Kim
,
D. G.
,
Bredbenner
,
T. L.
, and
Nicolella
,
D. P.
,
2018
, “
Determination of Sex Differences of Human Cadaveric Mandibular Condyles Using Statistical Shape and Trait Modeling
,”
Bone
,
106
, pp.
35
41
.10.1016/j.bone.2017.10.003
34.
Mutsvangwa
,
T.
,
Burdin
,
V.
,
Schwartz
,
C.
, and
Roux
,
C.
,
2015
, “
An Automated Statistical Shape Model Developmental Pipeline: Application to the Human Scapula and Humerus
,”
IEEE Trans. Biomed. Eng.
,
62
(
4
), pp.
1098
1107
.10.1109/TBME.2014.2368362
35.
Salhi
,
A.
,
Burdin
,
V.
,
Mutsvangwa
,
T.
,
Sivarasu
,
S.
,
Brochard
,
S.
, and
Borotikar
,
B.
,
2017
, “
Subject-Specific Shoulder Muscle Attachment Region Prediction Using Statistical Shape Models: A Validity Study
,”
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(
EMBS
), Seogwipo, South Korea, July 11–15, pp.
1640
1643
.10.1109/EMBC.2017.8037154
36.
Plessers
,
K.
,
Vanden Berghe
,
P.
,
Van Dijck
,
C.
,
Wirix-Speetjens
,
R.
,
Debeer
,
P.
,
Jonkers
,
I.
, and
Vander Sloten
,
J.
,
2018
, “
Virtual Reconstruction of Glenoid Bone Defects Using a Statistical Shape Model
,”
J. Shoulder Elbow Surg.
,
27
(
1
), pp.
160
166
.10.1016/j.jse.2017.07.026
37.
Sintini
,
I.
,
Burton
,
W. S.
,
Sade
,
P.
,
Chavarria
,
J. M.
, and
Laz
,
P. J.
,
2018
, “
Investigating Gender and Ethnicity Differences in Proximal Humeral Morphology Using a Statistical Shape Model
,”
J. Orthop. Res.
,
36
(
11
), pp.
3043
3052
.10.1002/jor.24070
38.
Kamer
,
L.
,
Noser
,
H.
,
Popp
,
A. W.
,
Lenz
,
M.
, and
Blauth
,
M.
,
2016
, “
Computational Anatomy of the Proximal Humerus: An Ex Vivo High-Resolution Peripheral Quantitative Computed Tomography Study
,”
J. Orthop. Transl.
,
4
, pp.
46
56
.10.1016/j.jot.2015.09.006
39.
Burton
,
W. S.
,
Sintini
,
I.
,
Chavarria
,
J. M.
,
Brownhill
,
J. R.
, and
Laz
,
P. J.
,
2019
, “
Assessment of Scapular Morphology and Bone Quality With Statistical Models
,”
Comput. Methods Biomech. Biomed. Eng.
,
22
(
4
), pp.
341
351
.10.1080/10255842.2018.1556260
40.
Pierre
,
M. A.
,
Zurakowski
,
D.
,
Nazarian
,
A.
,
Hauser-Kara
,
D. A.
, and
Snyder
,
B. D.
,
2010
, “
Assessment of the Bilateral Asymmetry of Human Femurs Based on Physical, Densitometric, and Structural Rigidity Characteristics
,”
J. Biomech.
,
43
(
11
), pp.
2228
2236
.10.1016/j.jbiomech.2010.02.032
41.
Verhaegen
,
F.
,
Plessers
,
K.
,
Verborgt
,
O.
,
Scheys
,
L.
, and
Debeer
,
P.
,
2018
, “
Can the Contralateral Scapula Be Used as a Reliable Template to Reconstruct the Eroded Scapula During Shoulder Arthroplasty?
,”
J. Shoulder Elbow Surg.
,
27
(
6
), pp.
1133
1138
.10.1016/j.jse.2017.12.024
42.
Fedorov
,
A.
,
Beichel
,
R.
,
Kalpathy-Cramer
,
J.
,
Finet
,
J.
,
Fillion-Robin
,
J. C.
,
Pujol
,
S.
,
Bauer
,
C.
,
Jennings
,
D.
,
Fennessy
,
F.
,
Sonka
,
M.
,
Buatti
,
J.
,
Aylward
,
S.
,
Miller
,
J. V.
,
Pieper
,
S.
, and
Kikinis
,
R.
,
2012
, “
3D Slicer as an Image Computing Platform for the Quantitative Imaging Network
,”
Magn. Reson. Imaging
,
30
(
9
), pp.
1323
1341
.10.1016/j.mri.2012.05.001
43.
Lalone
,
E. A.
,
Willing
,
R. T.
,
Shannon
,
H. L.
,
King
,
G. J. W.
, and
Johnson
,
J. A.
,
2015
, “
Accuracy Assessment of 3D Bone Reconstructions Using CT: An Intro Comparison
,”
Med. Eng. Phys.
,
37
(
8
), pp.
729
738
.10.1016/j.medengphy.2015.04.010
44.
Cignoni
,
P.
,
Callieri
,
M.
,
Corsini
,
M.
,
Dellepiane
,
M.
,
Ganovelli
,
F.
, and
Ranzuglia
,
G.
,
2008
, “
Meshlab: An Open-Source Mesh Processing Tool
,”
Eurographics Italian Chapter Conference
, Salerno, Italy, July 2–4, pp.
129
136
.https://pdfs.semanticscholar.org/1a3e/542b908e6af7923b04d4738e45e5bac10dcb.pdf
45.
Si
,
H.
,
2015
, “
TetGen, a Quality Tetrahedral Mesh Generator
,”
AMC Trans. Math. Software
,
41
(
2
), pp.
1
36
.10.1145/2629697
46.
Pauchard
,
Y.
,
Fitze
,
T.
,
Browarnik
,
D.
,
Eskandari
,
A.
,
Pauchard
,
I.
,
Enns-Bray
,
W.
,
Pálsson
,
H.
,
Sigurdsson
,
S.
,
Ferguson
,
S. J.
,
Harris
,
T. B.
,
Gudnason
,
V.
, and
Helgason
,
B.
,
2016
, “
Interactive Graph-Cut Segmentation for Fast Creation of Finite Element Models From Clinical Ct Data for Hip Fracture Prediction
,”
Comput. Methods Biomech. Biomed. Eng.
,
19
(
16
), pp.
1693
1703
.10.1080/10255842.2016.1181173
47.
Horn
,
J. L.
,
1965
, “
A Rationale and Test for the Number of Factors in Factor Analysis
,”
Psychometrika
,
30
(
2
), pp.
179
185
.10.1007/BF02289447
48.
Evans
,
J. D.
,
1996
,
Straightforward Statistics for the Behavioral Sciences
,
Thomson Brooks/Cole Publishing
, Pacific Grove, CA. 
49.
Hughes
,
R. E.
,
Bryant
,
C. R.
,
Hall
,
J. M.
,
Wening
,
J.
,
Huston
,
L. J.
,
Kuhn
,
J. E.
,
Carpenter
,
J. E.
, and
Blasier
,
R. B.
,
2003
, “
Glenoid Inclination is Associated With Full-Thickness Rotator Cuff Tears
,”
Clin. Orthop. Relat. Res.
,
407
, pp.
86
91
.10.1097/00003086-200302000-00016
50.
White
,
J. J. E.
,
Titchener
,
A. G.
,
Fakis
,
A.
,
Tambe
,
A. A.
,
Hubbard
,
R. B.
, and
Clark
,
D. I.
,
2014
, “
An Epidemiological Study of Rotator Cuff Pathology Using the Health Improvement Network Database
,”
Bone Jt. J.
,
96-B
(
3
), pp.
350
353
.10.1302/0301-620X.96B3.32336
51.
Razmjou
,
H.
,
Lincoln
,
S.
,
Macritchie
,
I.
,
Richards
,
R. R.
,
Medeiros
,
D.
, and
Elmaraghy
,
A.
,
2016
, “
Sex and Gender Disparity in Pathology, Disability, Referral Pattern, and Wait Time for Surgery in Workers With Shoulder Injury
,”
BMC Musculoskelet. Disord.
,
17
(
1
), p.
401
.10.1186/s12891-016-1257-7
52.
Mahaffy
,
M. D.
,
Knowles
,
N. K.
,
Berkmortel
,
C.
,
Abdic
,
S.
,
Walch
,
G.
,
Johnson
,
J. A.
, and
Athwal
,
G. S.
,
2020
, “
Density Distribution of the Type E2 Glenoid in Cuff Tear Arthropathy
,”
J. Shoulder Elbow Surg.
,
29
(
1
), pp.
167
174
.10.1016/j.jse.2019.05.046
53.
Shi
,
L.
,
Griffith
,
J. F.
,
Huang
,
J.
, and
Wang
,
D.
,
2013
, “
Excellent Side-to-Side Symmetry in Glenoid Size and Shape
,”
Skeletal. Radiol.
,
42
(
12
), pp.
1711
1715
.10.1007/s00256-013-1728-y
54.
Diederichs
,
G.
,
Korner
,
J.
,
Goldhahn
,
J.
, and
Linke
,
B.
,
2006
, “
Assessment of Bone Quality in the Proximal Humerus by Measurement of the Contralateral Site: A Cadaveric Analyze
,”
Arch. Orthop. Trauma Surg.
,
126
(
2
), pp.
93
100
.10.1007/s00402-006-0103-z
You do not currently have access to this content.