Abstract

Irreversible electroporation (IRE), a relatively new energy-based tumor ablation technology, has shown itself in the last decade to be able to safely ablate tumors with favorable clinical outcomes, yet little work has been done on optimizing the IRE protocol to variously sized tumors. Incomplete tumor ablation has been shown to be the main reason leading to the local recurrence and thus treatment failure. The goal of this study was to develop a general optimization approach to optimize the IRE protocol for cervical tumors in different sizes, while minimizing the damage to normal tissues. This kind of approach can lay a foundation for future personalized treatment of IRE. First, a statistical IRE cervical tumor death model was built using previous data in our group. Then, a multi-objective optimization problem model was built, in which the decision variables are five IRE-setting parameters, namely, the pulse strength (U), the length of active tip (H), the number of pulses delivered in one round between a pair of electrodes (A), the distance between electrodes (D), and the number of electrodes (N). The domains of the decision variables were determined based on the clinical experience. Finally, the problem model was solved by using nondominated sorting genetic algorithms II (NSGA-II) algorithm to give respective optimal protocol for three sizes of cervical tumors. Every protocol was assessed by the evaluation criterion established in the study to show the efficacy in a more straightforward way. The results of the study demonstrate this approach can theoretically provide the optimal IRE protocol for different sizes of tumors and may be generalizable to other types, sizes, and locations of tumors.

References

1.
Bhonsle
,
S.
,
Lorenzo
,
M. F.
,
Safaai-Jazi
,
A.
, and
Davalos
,
R. V.
,
2018
, “
Characterization of Nonlinearity and Dispersion in Tissue Impedance During High-Frequency Electroporation
,”
IEEE Trans. Biomed. Eng.
,
65
(
10
), pp.
2190
2201
.10.1109/TBME.2017.2787038
2.
Weaver
,
J. C.
,
1993
, “
Electroporation: A General Phenomenon for Manipulating Cells and Tissues
,”
J. Cell. Biochem.
,
51
(
4
), pp.
426
435
.10.1002/jcb.2400510407
3.
Lee
,
R. C.
, and
Kolodney
,
M. S.
,
1987
, “
Electrical Injury Mechanisms: Electrical Breakdown of Cell Membranes
,”
Plast. Reconstruct. Surg.
,
80
(
5
), pp.
672
679
.10.1097/00006534-198711000-00002
4.
Arena
,
C. B.
,
Sano
,
M. B.
,
Rossmeis
,
J. H.
,
Caldwell
,
J. L.
,
Garcia
,
P. A.
,
Rylander
,
M. N.
, and
Davalos
,
R. V.
,
2011
, “
High-Frequency Irreversible Electroporation (H-FIRE) for Non-Thermal Ablation Without Muscle Contraction
,”
Biomed. Eng. Online
,
10
(
1
), p.
102
.10.1186/1475-925X-10-102
5.
Martin
,
R. C.
,
Schwartz
,
E.
,
Adams
,
J.
,
Farah
,
I.
, and
Derhake
,
B. M.
,
2015
, “
Intra-Operative Anesthesia Management in Patients Undergoing Surgical Irreversible Electroporation of the Pancreas, Liver, Kidney, and Retroperitoneal Tumors
,”
Anesth. Pain Med.
,
5
(
2
), p.
e22786
.10.5812/aapm.22786
6.
Sano
,
M. B.
,
Fan
,
R. E.
,
Cheng
,
K.
,
Saenz
,
Y.
,
Sonn
,
G. A.
,
Hwang
,
G. L.
, and
Xing
,
L.
, et al
2018
, “
Reduction of Muscle Contractions During Irreversible Electroporation Therapy Using High-Frequency Bursts of Alternating Polarity Pulses: A Laboratory Investigation in an Ex Vivo Swine Model
,”
J. Vasc. Intervent. Radiol.
, 29(6), pp. 893-898.e4. 
7.
Sano
,
M. B.
,
Fesmire
,
C. C.
,
DeWitt
,
M. R.
, and
Xing
,
L.
,
2018
, “
Burst and Continuous High Frequency Irreversible Electroporation Protocols Evaluated in a 3D Tumor Model
,”
Phys. Med. Biol.
,
63
(
13
), p.
135022
.10.1088/1361-6560/aacb62
8.
Cheung
,
W.
,
Kavnoudias
,
H.
,
Roberts
,
S.
,
Szkandera
,
B.
,
Kemp
,
W.
, and
Thomson
,
K. R.
,
2013
, “
Irreversible Electroporation for Unresectable Hepatocellular Carcinoma: Initial Experience and Review of Safety and Outcomes
,”
Technol. Cancer Res. Treat.
,
12
(
3
), pp.
233
241
.10.7785/tcrt.2012.500317
9.
Jiang
,
C.
,
Shao
,
Q.
, and
Bischof
,
J.
,
2015
, “
Pulse Timing During Irreversible Electroporation Achieves Enhanced Destruction in a Hindlimb Model of Cancer
,”
Ann. Biomed. Eng.
,
43
(
4
), pp.
887
95
.10.1007/s10439-014-1133-2
10.
Shao
,
Q.
,
Liu
,
F.
,
Chung
,
C.
,
Elahi-Gedwillo
,
K.
,
Provenzano
,
P. P.
,
Forsyth
,
B.
, and
Bischof
,
J. C.
,
2018
, “
Physical and Chemical Enhancement of and Adaptive Resistance to Irreversible Electroporation of Pancreatic Cancer
,”
Ann. Biomed. Eng.
,
46
(
1
), pp.
25
12
.10.1007/s10439-017-1932-3
11.
Jiang
,
C.
,
Qin
,
Z.
, and
Bischof
,
J.
,
2014
, “
Membrane-Targeting Approaches for Enhanced Cancer Cell Destruction With Irreversible Electroporation
,”
Ann. Biomed. Eng.
,
42
(
1
), pp.
193
204
.10.1007/s10439-013-0882-7
12.
Zhang
,
B.
,
Yang
,
Y.
,
Ding
,
L.
,
Moser
,
M. A. J.
,
Zhang
,
E. M.
, and
Zhang
,
W.
,
2019
, “
Tumor Ablation Enhancement by Combining Radiofrequency Ablation and Irreversible Electroporation: An In Vitro 3D Tumor Study
,”
Ann. Biomed. Eng.
,
47
(
3
), pp.
694
705
.10.1007/s10439-018-02185-x
13.
Tarek
,
M.
,
2005
, “
Membrane Electroporation: A Molecular Dynamics Simulation
,”
Biophys. J.
,
88
(
6
), pp.
4045
4053
.10.1529/biophysj.104.050617
14.
Pech
,
M.
,
Janitzky
,
A.
,
Wendler
,
J. J.
,
Strang
,
C.
,
Blaschke
,
S.
,
Dudeck
,
O.
,
Ricke
,
J.
, and
Liehr
,
U.-B.
,
2011
, “
Irreversible Electroporation of Renal Cell Carcinoma: A First-in-Man Phase I Clinical Study
,”
Cardiovasc. Intervent. Radiol.
,
34
(
1
), pp.
132
138
.10.1007/s00270-010-9964-1
15.
Zhang
,
W. J.
,
Wang
,
J. W.
, and
Lin
,
Y. Z.
,
2019
, “
Design and Operation Management for Enterprise Systems
,”
Enterp. Inf. Syst.
,
13
(
4
), pp.
424
429
.10.1080/17517575.2019.1597169
16.
Garcia
,
P. A.
,
Rossmeisl
,
J. H.
,
Neal
,
R. E.
,
Ellis
,
T. L.
,
Olson
,
J. D.
,
Henao-Guerrero
,
N.
,
Robertson
,
J.
, and
Davalos
,
R. V.
,
2010
, “
Intracranial Nonthermal Irreversible Electroporation: In Vivo Analysis
,”
J. Membr. Biol.
,
236
(
1
), pp.
127
136
.10.1007/s00232-010-9284-z
17.
Neal
,
R. E.
, 2nd
, and
Davalos
,
R. V.
,
2009
, “
The Feasibility of Irreversible Electroporation for the Treatment of Breast Cancer and Other Heterogeneous Systems
,”
Ann. Biomed. Eng.
,
37
(
12
), pp.
2615
2625
.10.1007/s10439-009-9796-9
18.
Garcia
,
P. A.
,
Davalos
,
R. V.
, and
Miklavcic
,
D.
,
2014
, “
A Numerical Investigation of the Electric and Thermal Cell Kill Distributions in Electroporation-Based Therapies in Tissue
,”
PLoS One
,
9
(
8
), p.
e103083
.10.1371/journal.pone.0103083
19.
Golberg
,
A.
, and
Rubinsky
,
B.
,
2010
, “
A Statistical Model for Multidimensional Irreversible Electroporation Cell Death in Tissue
,”
Biomed. Eng. Online
,
9
(
1
), p.
13
.10.1186/1475-925X-9-13
20.
Peleg
,
M.
,
1995
, “
A Model of Microbial Survival After Exposure to Pulsed Electric Fields
,”
J. Sci. Food Agric.
,
67
(
1
), pp.
93
99
.10.1002/jsfa.2740670115
21.
Yang
,
Y.
,
Moser
,
M. A. J.
,
Zhang
,
E.
,
Zhang
,
W.
, and
Zhang
,
B.
,
2018
, “
Development of a Statistical Model for Cervical Cancer Cell Death With Irreversible Electroporation In Vitro
,”
PLoS One
,
13
(
4
), p.
e0195561
.10.1371/journal.pone.0195561
22.
Neal
,
R. E.
,
Garcia
,
P. A.
,
Robertson
,
J. L.
, and
Davalos
,
R. V.
,
2012
, “
Experimental Characterization and Numerical Modeling of Tissue Electrical Conductivity During Pulsed Electric Fields for Irreversible Electroporation Treatment Planning
,”
IEEE Trans. Biomed. Eng.
,
59
(
4
), pp.
1076
1085
.10.1109/TBME.2012.2182994
23.
Gabriel
,
C.
,
Gabriel
,
S.
, and
Corthout
,
E.
,
1996
, “
The Dielectric Properties of Biological Tissues: I. Literature Survey
,”
Phys. Med. Biol.
,
41
(
11
), pp.
2231
2249
.10.1088/0031-9155/41/11/001
24.
Balidemaj
,
E.
,
de Boer
,
P.
,
van Lier
,
A. L. H. M. W.
,
Remis
,
R. F.
,
Stalpers
,
L. J. A.
,
Westerveld
,
G. H.
,
Nederveen
,
A. J.
,
van den Berg
,
C. A. T.
, and
Crezee
,
J.
,
2016
, “
In Vivo Electric Conductivity of Cervical Cancer Patients Based on B(1)(+) Maps at 3T MRI
,”
Phys. Med. Biol.
,
61
(
4
), pp.
1596
1607
.10.1088/0031-9155/61/4/1596
25.
Ivorra
,
A.
,
Al-Sakere
,
B.
,
Rubinsky
,
B.
, and
Mir
,
L. M.
,
2009
, “
In Vivo Electrical Conductivity Measurements During and After Tumor Electroporation: Conductivity Changes Reflect the Treatment Outcome
,”
Phys. Med. Biol.
,
54
(
19
), pp.
5949
5963
.10.1088/0031-9155/54/19/019
26.
Garcia
,
P. A.
,
Rossmeisl
,
J. H.
,
Neal
,
R. E.
,
Ellis
,
T. L.
, and
Davalos
,
R. V.
,
2011
, “
A Parametric Study Delineating Irreversible Electroporation From Thermal Damage Based on a Minimally Invasive Intracranial Procedure
,”
Biomed. Eng. Online
,
10
(
1
), pp.
34
34
.10.1186/1475-925X-10-34
27.
Latouche
,
E. L.
,
Davalos
,
R. V.
, and
Martin
,
R. C. G.
,
2015
, “
Modeling of Irreversible Electroporation Treatments for the Optimization of Pancreatic Cancer Therapies
,”
IFMBE Proc.
,
45
, pp.
801
804
.10.1007/978-3-319-11128-5
28.
Yang
,
Y.
,
Moser
,
M.
,
Zhang
,
E.
,
Zhang
,
W.
, and
Zhang
,
B.
,
2018
, “
Optimization of Electrode Configuration and Pulse Strength in Irreversible Electroporation for Large Ablation Volumes Without Thermal Damage
,”
ASME J. Eng. Sci. Med. Diagn. Ther.
,
1
(
2
), p.
021002
.10.1115/1.4038791
29.
Faroja, M., Ahmed, M., Appelbaum, L., Ben-David, E., Moussa, M., Sosna, J., Nissenbaum, I., and Nahum Goldberg, S.
,
2013
, “
Irreversible Electroporation Ablation: Is All the Damage Nonthermal?
,”
Radiology
,
266
(
2
), p.
462
.10.1148/radiol.12120609
30.
Liat
,
A.
,
Eliel
,
B. D.
,
Mohammad
,
F.
,
Yizhak
,
N.
,
Jacob
,
S.
, and
Nahum
,
G. S.
,
2014
, “
Irreversible Electroporation Ablation: Creation of Large-Volume Ablation Zones in In Vivo Porcine Liver With Four-Electrode Arrays
,”
Radiology
,
270
(
2
), pp.
416
424
.10.1148/radiol.13130349
31.
Christine
,
B.
,
Thomson
,
K. R.
, and
Helen
,
K.
,
2010
, “
Irreversible Electroporation: A New Challenge in “Out of Operating Theater” Anesthesia
,”
Anesth. Analg.
,
110
(
5
), pp.
1305
1309
.10.1213/ANE.0b013e3181d27b30
32.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.10.1109/4235.996017
33.
Županič
,
A.
, and
Miklavčič
,
D.
,
2010
, “
Optimization and Numerical Modeling in Irreversible Electroporation Treatment Planning
,”
Irreversible Electroporation
,
Springer
, Cham, Switzerland, pp.
203
222
34.
Corovic
,
S.
,
Zupanic
,
A.
, and
Miklavcic
,
D.
,
2008
, “
Numerical Modeling and Optimization of Electric Field Distribution in Subcutaneous Tumor Treated With Electrochemotherapy Using Needle Electrodes
,”
IEEE Trans. Plasma Sci.
,
36
(
4
), pp.
1665
1672
.10.1109/TPS.2008.2000996
35.
Xu
,
Y.
,
Moser
,
M. A. J.
,
Zhang
,
E.
,
Zhang
,
W.
, and
Zhang
,
B.
,
2019
, “
Large and Round Ablation Zones With Microwave Ablation: A Preliminary Study of an Optimal Aperiodic Tri-Slot Coaxial Antenna With the π-Matching Network Section
,”
Int. J. Therm. Sci.
,
140
, pp.
539
548
.10.1016/j.ijthermalsci.2019.03.022
You do not currently have access to this content.