Abstract

Electroporation-based therapy (EBT), as a high-voltage-pulse technology has been prevalent with favorable clinical outcomes in the treatment of various solid tumors. This review paper aims to promote the clinical translation of EBT for brain tumors. First, we briefly introduced the mechanism of pore formation in a cell membrane activated by external electric fields using a single cell model. Then, we summarized and discussed the current in vitro and in vivo preclinical studies, in terms of (1) the safety and effectiveness of EBT for brain tumors in animal models, and (2) the blood-brain barrier (BBB) disruption induced by EBT. Two therapeutic effects could be achieved in EBT for brain tumors simultaneously, i.e., the tumor ablation induced by irreversible electroporation (IRE) and transient BBB disruption induced by reversible electroporation (RE). The BBB disruption could potentially improve the uptake of antitumor drugs thereby enhancing brain tumor treatment. The challenges that hinder the application of EBT in the treatment of human brain tumors are discussed in the review paper as well.

References

1.
Louis
,
D. N.
,
Perry
,
A.
,
Reifenberger
,
G.
,
Von Deimling
,
A.
,
Figarella-Branger
,
D.
,
Cavenee
,
W. K.
,
Ohgaki
,
H.
,
Wiestler
,
O. D.
,
Kleihues
,
P.
, and
Ellison
,
D. W.
,
2016
, “
The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A Summary
,”
Acta Neuropathol.
,
131
(
6
), pp.
803
820
.10.1007/s00401-016-1545-1
2.
Hoover
,
J. M.
,
Chang
,
S. M.
, and
Parney
,
I. F.
,
2010
, “
Clinical Trials in Brain Tumor Surgery
,”
Neuroimag. Clin.
,
20
(
3
), pp.
409
424
.10.1016/j.nic.2010.04.006
3.
Barnholtz-Sloan
,
J. S.
,
Ostrom
,
Q. T.
, and
Cote
,
D.
,
2018
, “
Epidemiology of Brain Tumors
,”
Neurol. Clin.
,
36
(
3
), pp.
395
419
.10.1016/j.ncl.2018.04.001
4.
Batash
,
R.
,
Asna
,
N.
,
Schaffer
,
P.
,
Francis
,
N.
, and
Schaffer
,
M.
,
2017
, “
Glioblastoma Multiforme, Diagnosis and Treatment; Recent Literature Review
,”
Curr. Med. Chem.
,
24
(
27
), pp.
3002
3009
.10.2174/0929867324666170516123206
5.
Tan
,
A. C.
,
Ashley
,
D. M.
,
López
,
G. Y.
,
Malinzak
,
M.
,
Friedman
,
H. S.
, and
Khasraw
,
M.
,
2020
, “
Management of Glioblastoma: State of the Art and Future Directions
,”
CA-Cancer J. Clin.
, 70(4), pp.
299
312
.10.3322/caac.21613
6.
Delgado-López
,
P.
, and
Corrales-García
,
E.
,
2016
, “
Survival in Glioblastoma: A Review on the Impact of Treatment Modalities
,”
Clin. Transl. Onol.
,
18
(
11
), pp.
1062
1071
.10.1007/s12094-016-1497-x
7.
Patel
,
A. P.
,
Fisher
,
J. L.
,
Nichols
,
E.
,
Abd-Allah
,
F.
,
Abdela
,
J.
,
Abdelalim
,
A.
,
Abraha
,
H. N.
,
Agius
,
D.
,
Alahdab
,
F.
,
Alam
,
T.
,
Allen
,
C. A.
,
Anber
,
N. H.
,
Awasthi
,
A.
,
Badali
,
H.
,
Belachew
,
A. B.
,
Bijani
,
A.
,
Bjørge
,
T.
,
Carvalho
,
F.
,
Catalá-López
,
F.
,
Choi
,
J.-Y. J.
,
Daryani
,
A.
,
Degefa
,
M. G.
,
Demoz
,
G. T.
,
Do
,
H. P.
,
Dubey
,
M.
,
Fernandes
,
E.
,
Filip
,
I.
,
Foreman
,
K. J.
,
Gebre
,
A. K.
,
Geramo
,
Y. C. D.
,
Hafezi-Nejad
,
N.
,
Hamidi
,
S.
,
Harvey
,
J. D.
,
Hassen
,
H. Y.
,
Hay
,
S. I.
,
Irvani
,
S. S. N.
,
Jakovljevic
,
M.
,
Jha
,
R. P.
,
Kasaeian
,
A.
,
Khalil
,
I. A.
,
Khan
,
E. A.
,
Khang
,
Y.-H.
,
Kim
,
Y. J.
,
Mengistu
,
G.
,
Mohammad
,
K. A.
,
Mokdad
,
A. H.
,
Nagel
,
G.
,
Naghavi
,
M.
,
Naik
,
G.
,
Nguyen
,
H. L. T.
,
Nguyen
,
L. H.
,
Nguyen
,
T. H.
,
Nixon
,
M. R.
,
Olagunju
,
A. T.
,
Pereira
,
D. M.
,
Pinilla-Monsalve
,
G. D.
,
Poustchi
,
H.
,
Qorbani
,
M.
,
Radfar
,
A.
,
Reiner
,
R. C.
,
Roshandel
,
G.
,
Safari
,
H.
,
Safiri
,
S.
,
Samy
,
A. M.
,
Sarvi
,
S.
,
Shaikh
,
M. A.
,
Sharif
,
M.
,
Sharma
,
R.
,
Sheikhbahaei
,
S.
,
Shirkoohi
,
R.
,
Singh
,
J. A.
,
Smith
,
M.
,
Tabarés-Seisdedos
,
R.
,
Tran
,
B. X.
,
Tran
,
K. B.
,
Ullah
,
I.
,
Weiderpass
,
E.
,
Weldegwergs
,
K. G.
,
Yimer
,
E. M.
,
Zadnik
,
V.
,
Zaidi
,
Z.
,
Ellenbogen
,
R. G.
,
Vos
,
T.
,
Feigin
,
V. L.
,
Murray
,
C. J. L.
, and
Fitzmaurice
,
C.
,
2019
, “
Global, Regional, and National Burden of Brain and Other CNS Cancer, 1990–2016: A Systematic Analysis for the Global Burden of Disease Study 2016
,”
Lancet Neurol.
,
18
(
4
), pp.
376
393
.10.1016/S1474-4422(18)30468-X
8.
Paek
,
S. H.
,
Audu
,
P. B.
,
Sperling
,
M. R.
,
Cho
,
J.
, and
Andrews
,
D. W.
,
2005
, “
Reevaluation of Surgery for the Treatment of Brain Metastases: Review of 208 Patients With Single orMultiple Brain Metastases Treated at One Institution With Modern Neurosurgical Techniques
,”
Neurosurgery
,
56
(
5
), pp.
1021
1034
.10.1227/01.NEU.0000158321.90608.BE
9.
Lara-Velazquez
,
M.
,
Al-Kharboosh
,
R.
,
Jeanneret
,
S.
,
Vazquez-Ramos
,
C.
,
Mahato
,
D.
,
Tavanaiepour
,
D.
,
Rahmathulla
,
G.
, and
Quinones-Hinojosa
,
A.
,
2017
, “
Advances in Brain Tumor Surgery for Glioblastoma in Adults
,”
Brain Sci.
,
7
(
12
), p.
166
.10.3390/brainsci7120166
10.
Eseonu
,
C. I.
,
Eguia
,
F.
,
ReFaey
,
K.
,
Garcia
,
O.
,
Rodriguez
,
F. J.
,
Chaichana
,
K.
, and
Quinones-Hinojosa
,
A.
,
2017
, “
Comparative Volumetric Analysis of the Extent of Resection of Molecularly and Histologically Distinct Low Grade Gliomas and Its Role on Survival
,”
J. Neuro-Oncol.
,
134
(
1
), pp.
65
74
.10.1007/s11060-017-2486-9
11.
Asthagiri
,
A. R.
,
Pouratian
,
N.
,
Sherman
,
J.
,
Ahmed
,
G.
, and
Shaffrey
,
M. E.
,
2007
, “
Advances in Brain Tumor Surgery
,”
Neurol. Clin.
,
25
(
4
), pp.
975
1003
.10.1016/j.ncl.2007.07.006
12.
Stienen
,
M. N.
,
Zhang
,
D. Y.
,
Broggi
,
M.
,
Seggewiss
,
D.
,
Villa
,
S.
,
Schiavolin
,
S.
,
Bozinov
,
O.
,
Krayenbühl
,
N.
,
Sarnthein
,
J.
,
Ferroli
,
P.
, and
Regli
,
L.
,
2018
, “
The Influence of Preoperative Dependency on Mortality, Functional Recovery and Complications After Microsurgical Resection of Intracranial Tumors
,”
J. Neuro-Oncol.
,
139
(
2
), pp.
441
448
.10.1007/s11060-018-2882-9
13.
Nelson
,
C. J.
,
Nandy
,
N.
, and
Roth
,
A. J.
,
2007
, “
Chemotherapy and Cognitive Deficits: Mechanisms, Findings, and Potential Interventions
,”
Palliat. Support Care
,
5
(
3
), pp.
273
280
.10.1017/S1478951507000442
14.
Anjum
,
K.
,
Shagufta
,
B. I.
,
Abbas
,
S. Q.
,
Patel
,
S.
,
Khan
,
I.
,
Shah
,
S. A. A.
,
Akhter
,
N.
, and
Ul Hassan
,
S. S.
,
2017
, “
Current Status and Future Therapeutic Perspectives of Glioblastoma Multiforme (GBM) Therapy: A Review
,”
Biomed. Pharmacother.
,
92
, pp.
681
689
.10.1016/j.biopha.2017.05.125
15.
Robbins
,
M.
,
Greene-Schloesser
,
D.
,
Peiffer
,
A. M.
,
Shaw
,
E.
,
Chan
,
M. D.
, and
Wheeler
,
K. T.
,
2012
, “
Radiation-Induced Brain Injury: A Review
,”
Front. Oncol.
,
2
, p.
73
.10.3389/fonc.2012.00073
16.
Chakroun
,
R. W.
,
Zhang
,
P.
,
Lin
,
R.
,
Schiapparelli
,
P.
,
Quinones‐Hinojosa
,
A.
, and
Cui
,
H.
,
2018
, “
Nanotherapeutic Systems for Local Treatment of Brain Tumors
,”
Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.
,
10
(
1
), p.
e1479
.10.1002/wnan.1479
17.
Douw
,
L.
,
Baayen
,
H.
,
Bosma
,
I.
,
Klein
,
M.
,
Vandertop
,
P.
,
Heimans
,
J.
,
Stam
,
K.
,
de Munck
,
J.
, and
Reijneveld
,
J.
,
2008
, “
Treatment-Related Changes in Functional Connectivity in Brain Tumor Patients: A Magnetoencephalography Study
,”
Exp. Neurol.
,
212
(
2
), pp.
285
290
.10.1016/j.expneurol.2008.03.013
18.
Gehrke
,
A. K.
,
Baisley
,
M. C.
,
Sonck
,
A. L.
,
Wronski
,
S. L.
, and
Feuerstein
,
M.
,
2013
, “
Neurocognitive Deficits Following Primary Brain Tumor Treatment: Systematic Review of a Decade of Comparative Studies
,”
J. Neuro-Oncol.
,
115
(
2
), pp.
135
142
.10.1007/s11060-013-1215-2
19.
Sanai
,
N.
, and
Berger
,
M. S.
,
2018
, “
Surgical Oncology for Gliomas: The State of the Art
,”
Nat. Rev. Clin. Oncol.
,
15
(
2
), pp.
112
125
.10.1038/nrclinonc.2017.171
20.
Gananadha
,
S.
,
Wulf
,
S.
, and
Morris
,
D.
,
2004
, “
Safety and Efficacy of Radiofrequency Ablation of Brain: A Potentially Minimally Invasive Treatment for Brain Tumours
,”
Minim. Invas. Neurosur.
,
47
(
6
), pp.
325
328
.10.1055/s-2004-830124
21.
Miao
,
Y.
,
Ni
,
Y.
,
Yu
,
J.
,
Zhang
,
H.
, and
Marchal
,
G.
,
2002
, “
Evaluation of Radiofrequency Ablation as an Alternative for the Treatment of Brain Tumor in Rabbits
,”
J. Neuro-Oncol.
,
56
(
2
), pp.
119
126
.10.1023/A:1014538011293
22.
MacDonell
,
J.
,
Patel
,
N.
,
Rubino
,
S.
,
Ghoshal
,
G.
,
Fischer
,
G.
,
Burdette
,
E. C.
,
Hwang
,
R.
, and
Pilitsis
,
J. G.
,
2018
, “
Magnetic Resonance–Guided Interstitial High-Intensity Focused Ultrasound for Brain Tumor Ablation
,”
Neurosurg. Focus
,
44
(
2
), p.
E11
.10.3171/2017.11.FOCUS17613
23.
Maloney
,
E.
, and
Hwang
,
J. H.
,
2015
, “
Emerging HIFU Applications in Cancer Therapy
,”
Int. J. Hyperthermia
,
31
(
3
), pp.
302
309
.10.3109/02656736.2014.969789
24.
Salehi
,
A.
,
Kamath
,
A. A.
,
Leuthardt
,
E. C.
, and
Kim
,
A. H.
,
2018
, “
Management of Intracranial Metastatic Disease With Laser Interstitial Thermal Therapy
,”
Front. Oncol.
,
8
, p.
499
.10.3389/fonc.2018.00499
25.
Alattar
,
A. A.
,
Bartek
,
J.
, Jr.
,
Chiang
,
V. L.
,
Mohammadi
,
A. M.
,
Barnett
,
G. H.
,
Sloan
,
A.
, and
Chen
,
C. C.
,
2019
, “
Stereotactic Laser Ablation as Treatment of Brain Metastases Recurring After Stereotactic Radiosurgery: A Systematic Literature Review
,”
World Neurosurg.
,
128
, pp.
134
142
.10.1016/j.wneu.2019.04.200
26.
Fang
,
Z.
,
Zhang
,
B.
, and
Zhang
,
W.
,
2017
, “
Current Solutions for the Heat-Sink Effect of Blood Vessels With Radiofrequency Ablation: A Review and Future Work
,”
Advanced Computational Methods in Life System Modeling and Simulation
,
Springer
, New York, pp.
113
122
.
27.
Bastos
,
D.
,
C D
,
A.
,
Fuentes
,
D. T.
,
Traylor
,
J.
,
Weinberg
,
J.
,
Kumar
,
V. A.
,
Stafford
,
J.
,
Li
,
J.
,
Rao
,
G.
, and
Prabhu
,
S. S.
,
2020
, “
The Use of Laser Interstitial Thermal Therapy in the Treatment of Brain Metastases: A Literature Review
,”
Int. J. Hyperthermia
,
37
(
2
), pp.
53
60
.10.1080/02656736.2020.1748238
28.
Abdolhosseinzadeh
,
A.
,
Mojra
,
A.
, and
Ashrafizadeh
,
A.
,
2019
, “
A Numerical Study on Thermal Ablation of Brain Tumor With Intraoperative Focused Ultrasound
,”
J. Therm. Biol.
,
83
, pp.
119
133
.10.1016/j.jtherbio.2019.05.019
29.
Chen
,
X.
, and
Saidel
,
G. M.
,
2010
, “
Modeling of Laser Coagulation of Tissue With MRI Temperature Monitoring
,”
ASME J. Biomech. Eng.
,
132
(
6
), p. 064503.10.1115/1.4001395
30.
Singh
,
S.
, and
Melnik
,
R.
,
2020
, “
Thermal Ablation of Biological Tissues in Disease Treatment: A Review of Computational Models and Future Directions
,”
Electromagn. Biol. Med.
, 39(2), pp.
1
40
.10.1080/15368378.2020.1741383
31.
Kangasniemi
,
M.
,
McNichols
,
R. J.
,
Bankson
,
J. A.
,
Gowda
,
A.
,
Price
,
R. E.
, and
Hazle
,
J. D.
,
2004
, “
Thermal Therapy of Canine Cerebral Tumors Using a 980 nm Diode Laser With MR Temperature‐Sensitive Imaging Feedback
,”
Lasers Surg. Med.
,
35
(
1
), pp.
41
50
.10.1002/lsm.20069
32.
Sloan
,
A. E.
,
Ahluwalia
,
M. S.
,
Valerio-Pascua
,
J.
,
Manjila
,
S.
,
Torchia
,
M. G.
,
Jones
,
S. E.
,
Sunshine
,
J. L.
,
Phillips
,
M.
,
Griswold
,
M. A.
,
Clampitt
,
M.
,
Brewer
,
C.
,
Jochum
,
J.
,
McGraw
,
M. V.
,
Diorio
,
D.
,
Ditz
,
G.
, and
Barnett
,
G. H.
,
2013
, “
Results of the NeuroBlate System First-in-Humans Phase I Clinical Trial for Recurrent Glioblastoma
,”
J. Neurosurg.
,
118
(
6
), pp.
1202
1219
.10.3171/2013.1.JNS1291
33.
Zupanic
,
A.
,
Kos
,
B.
, and
Miklavcic
,
D.
,
2012
, “
Treatment Planning of Electroporation-Based Medical Interventions: Electrochemotherapy, Gene Electrotransfer and Irreversible Electroporation
,”
Phys. Med. Biol.
,
57
(
17
), pp.
5425
5440
.10.1088/0031-9155/57/17/5425
34.
Dong
,
S.
,
Wang
,
H.
,
Zhao
,
Y.
,
Sun
,
Y.
, and
Yao
,
C.
,
2018
, “
First Human Trial of High-Frequency Irreversible Electroporation Therapy for Prostate Cancer
,”
Technol. Cancer Res. T
,
17
, p.
153303381878969
.10.1177/1533033818789692
35.
Low
,
L.
,
Mander
,
A.
,
McCann
,
K.
,
Dearnaley
,
D.
,
Tjelle
,
T.
,
Mathiesen
,
I.
,
Stevenson
,
F.
, and
Ottensmeier
,
C. H.
,
2009
, “
DNA Vaccination With Electroporation Induces Increased Antibody Responses in Patients With Prostate Cancer
,”
Hum. Gene Ther.
,
20
(
11
), pp.
1269
1278
.10.1089/hum.2009.067
36.
Falk
,
H.
,
Matthiessen
,
L.
,
Wooler
,
G.
, and
Gehl
,
J.
,
2018
, “
Calcium Electroporation for Treatment of Cutaneous Metastases; a Randomized Double-Blinded Phase II Study, Comparing the Effect of Calcium Electroporation With Electrochemotherapy
,”
Acta Oncol.
,
57
(
3
), pp.
311
319
.10.1080/0284186X.2017.1355109
37.
Frandsen
,
S. K.
,
Vissing
,
M.
, and
Gehl
,
J.
,
2020
, “
A Comprehensive Review of Calcium Electroporation—A Novel Cancer Treatment Modality
,”
Cancers
,
12
(
2
), p.
290
.10.3390/cancers12020290
38.
Leen
,
E.
,
Picard
,
J.
,
Stebbing
,
J.
,
Abel
,
M.
,
Dhillon
,
T.
, and
Wasan
,
H.
,
2018
, “
Percutaneous Irreversible Electroporation With Systemic Treatment for Locally Advanced Pancreatic Adenocarcinoma
,”
J. Gastrointest. Oncol.
,
9
(
2
), pp.
275
281
.10.21037/jgo.2018.01.14
39.
Al Efishat
,
M.
,
Wolfgang
,
C. L.
, and
Weiss
,
M. J.
,
2015
, “
Stage III Pancreatic Cancer and the Role of Irreversible Electroporation
,”
BMJ
,
350
, pp.
h521
h521
.10.1136/bmj.h521
40.
Wendler
,
J. J.
,
Ricke
,
J.
,
Pech
,
M.
,
Fischbach
,
F.
,
Jürgens
,
J.
,
Siedentopf
,
S.
,
Roessner
,
A.
,
Porsch
,
M.
,
Baumunk
,
D.
,
Schostak
,
M.
,
Köllermann
,
J.
, and
Liehr
,
U.-B.
,
2016
, “
First Delayed Resection Findings After Irreversible Electroporation (IRE) of Human Localised Renal Cell Carcinoma (RCC) in the IRENE Pilot Phase 2a Trial
,”
Cardiovasc. Intervent. Radiol.
,
39
(
2
), pp.
239
250
.10.1007/s00270-015-1200-6
41.
Trimmer
,
C. K.
,
Khosla
,
A.
,
Morgan
,
M.
,
Stephenson
,
S. L.
,
Ozayar
,
A.
, and
Cadeddu
,
J. A.
,
2015
, “
Minimally Invasive Percutaneous Treatment of Small Renal Tumors With Irreversible Electroporation: A Single-Center Experience
,”
J. Vasc. Interv. Radiol.
,
26
(
10
), pp.
1465
1471
.10.1016/j.jvir.2015.06.028
42.
Cheung
,
W.
,
Kavnoudias
,
H.
,
Roberts
,
S.
,
Szkandera
,
B.
,
Kemp
,
W.
, and
Thomson
,
K. R.
,
2013
, “
Irreversible Electroporation for Unresectable Hepatocellular Carcinoma: Initial Experience and Review of Safety and Outcomes
,”
Technol. Cancer Res. Treat.
,
12
(
3
), pp.
233
241
.10.7785/tcrt.2012.500317
43.
Distelmaier
,
M.
,
Barabasch
,
A.
,
Heil
,
P.
,
Kraemer
,
N. A.
,
Isfort
,
P.
,
Keil
,
S.
,
Kuhl
,
C. K.
, and
Bruners
,
P.
,
2017
, “
Midterm Safety and Efficacy of Irreversible Electroporation of Malignant Liver Tumors Located Close to Major Portal or Hepatic Veins
,”
Radiology
,
285
(
3
), pp.
1023
1031
.10.1148/radiol.2017161561
44.
Fang
,
Z.
,
Mao
,
H.
,
Moser
,
M. A.
,
Zhang
,
W.
,
Qian
,
Z.
, and
Zhang
,
B.
,
2021
, “
Irreversible Electroporation Enhanced by Radiofrequency Ablation: An In Vitro and Computational Study in a 3D Liver Tumor Model
,”
Ann. Biomed. Eng.
, pp.
1
13
. 10.1007/s10439-021-02734-x
45.
Shirakashi
,
R.
,
Sukhorukov
,
V. L.
,
Tanasawa
,
I.
, and
Zimmermann
,
U.
,
2004
, “
Measurement of the Permeability and Resealing Time Constant of the Electroporated Mammalian Cell Membranes
,”
Int. J. Heat Mass Transfer
,
47
(
21
), pp.
4517
24
.10.1016/j.ijheatmasstransfer.2004.04.007
46.
Granot
,
Y.
, and
Rubinsky
,
B.
,
2008
, “
Mass Transfer Model for Drug Delivery in Tissue Cells With Reversible Electroporation
,”
Int. J. Heat Mass Transfer
,
51
(
23–24
), pp.
5610
5616
.10.1016/j.ijheatmasstransfer.2008.04.041
47.
Sersa
,
G.
,
Miklavcic
,
D.
,
Cemazar
,
M.
,
Rudolf
,
Z.
,
Pucihar
,
G.
, and
Snoj
,
M.
,
2008
, “
Electrochemotherapy in Treatment of Tumours
,”
Eur. J. Surg. Oncol.
,
34
(
2
), pp.
232
240
.10.1016/j.ejso.2007.05.016
48.
Agerholm-Larsen
,
B.
,
Iversen
,
H. K.
,
Ibsen
,
P.
,
Moller
,
J. M.
,
Mahmood
,
F.
,
Jensen
,
K. S.
, and
Gehl
,
J.
,
2011
, “
Preclinical Validation of Electrochemotherapy as an Effective Treatment for Brain Tumors
,”
Cancer Res.
,
71
(
11
), pp.
3753
3762
.10.1158/0008-5472.CAN-11-0451
49.
Mir
,
L.
,
2009
, “
Nucleic Acids Electrotransfer-Based Gene Therapy (Electrogenetherapy): Past, Current, and Future
,”
Mol. Biotechnol.
,
43
(
2
), pp.
167
176
.10.1007/s12033-009-9192-6
50.
Geboers
,
B.
,
Scheffer
,
H. J.
,
Graybill
,
P. M.
,
Ruarus
,
A. H.
,
Nieuwenhuizen
,
S.
,
Puijk
,
R. S.
,
van den Tol
,
P. M.
,
Davalos
,
R. V.
,
Rubinsky
,
B.
,
de Gruijl
,
T. D.
,
Miklavčič
,
D.
, and
Meijerink
,
M. R.
,
2020
, “
High-Voltage Electrical Pulses in Oncology: Irreversible Electroporation, Electrochemotherapy, Gene Electrotransfer, Electrofusion, and Electroimmunotherapy
,”
Radiology
,
295
(
2
), pp.
254
272
.10.1148/radiol.2020192190
51.
Yarmush
,
M. L.
,
Golberg
,
A.
,
Serša
,
G.
,
Kotnik
,
T.
, and
Miklavčič
,
D.
,
2014
, “
Electroporation-Based Technologies for Medicine: Principles, Applications, and Challenges
,”
Ann. Rev. Biomed. Eng.
,
16
(
1
), pp.
295
320
.10.1146/annurev-bioeng-071813-104622
52.
Davalos
,
R. V.
,
Mir
,
L.
, and
Rubinsky
,
B.
,
2005
, “
Tissue Ablation With Irreversible Electroporation
,”
Ann. Biomed. Eng.
,
33
(
2
), pp.
223
231
.10.1007/s10439-005-8981-8
53.
Kos
,
B.
,
Voigt
,
P.
,
Miklavcic
,
D.
, and
Moche
,
M.
,
2015
, “
Careful Treatment Planning Enables Safe Ablation of Liver Tumors Adjacent to Major Blood Vessels by Percutaneous Irreversible Electroporation (IRE)
,”
Radiol. Oncol.
,
49
(
3
), pp.
234
241
.10.1515/raon-2015-0031
54.
Wimmer
,
T.
,
Srimathveeravalli
,
G.
,
Gutta
,
N.
,
Ezell
,
P. C.
,
Monette
,
S.
,
Maybody
,
M.
,
Erinjery
,
J. P.
,
Durack
,
J. C.
,
Coleman
,
J. A.
, and
Solomon
,
S. B.
,
2015
, “
Planning Irreversible Electroporation in the Porcine Kidney: Are Numerical Simulations Reliable for Predicting Empiric Ablation Outcomes?
,”
Cardiovasc. Intervent. Radiol.
,
38
(
1
), pp.
182
190
.10.1007/s00270-014-0905-2
55.
Qasrawi
,
R.
,
Silve
,
L.
,
Burdio
,
F.
,
Abdeen
,
Z.
, and
Ivorra
,
A.
,
2017
, “
Anatomically Realistic Simulations of Liver Ablation by Irreversible Electroporation: Impact of Blood Vessels on Ablation Volumes and Undertreatment
,”
Technol. Cancer Res. Treat.
,
16
(
6
), pp.
783
792
.10.1177/1533034616687477
56.
Huang
,
H. W.
,
2013
, “
Influence of Blood Vessel on the Thermal Lesion Formation During Radiofrequency Ablation for Liver Tumors
,”
Med. Phys.
,
40
(
7
), p.
073303
.10.1118/1.4811135
57.
Neal
,
R. E.
,
Millar
,
J. L.
,
Kavnoudias
,
H.
,
Royce
,
P.
,
Rosenfeldt
,
F.
,
Pham
,
A.
,
Smith
,
R.
,
Davalos
,
R. V.
, and
Thomson
,
K. R.
,
2014
, “
In Vivo Characterization and Numerical Simulation of Prostate Properties for Non‐Thermal Irreversible Electroporation Ablation
,”
Prostate
,
74
(
5
), pp.
458
468
.10.1002/pros.22760
58.
Onik
,
G.
,
Mikus
,
P.
, and
Rubinsky
,
B.
,
2007
, “
Irreversible Electroporation: Implications for Prostate Ablation
,”
Technol. Cancer Res. Treat.
,
6
(
4
), pp.
295
300
.10.1177/153303460700600405
59.
Koruth
,
J. S.
,
Kuroki
,
K.
,
Kawamura
,
I.
,
Brose
,
R.
,
Viswanathan
,
R.
,
Buck
,
E. D.
,
Donskoy
,
E.
,
Neuzil
,
P.
,
Dukkipati
,
S. R.
, and
Reddy
,
V. Y.
,
2020
, “
Pulsed Field Ablation Versus Radiofrequency Ablation: Esophageal Injury in a Novel Porcine Model
,”
Circ-Arrhythmia Elec.
,
13
(
3
), p.
e008303
.10.1161/CIRCEP.119.008303
60.
Lorenzo
,
M. F.
,
Arena
,
C. B.
, and
Davalos
,
R. V.
,
2017
, “
Maximizing Local Access to Therapeutic Deliveries in Glioblastoma—Part III: Irreversible Electroporation and High-Frequency Irreversible Electroporation for the Eradication of Glioblastoma
,” Exon Publications, Brisbane, Australia, pp.
373
393
.https://www.ncbi.nlm.nih.gov/books/NBK469989/
61.
Campana
,
L. G.
,
Edhemovic
,
I.
,
Soden
,
D.
,
Perrone
,
A. M.
,
Scarpa
,
M.
,
Campanacci
,
L.
,
Cemazar
,
M.
,
Valpione
,
S.
,
Miklavčič
,
D.
,
Mocellin
,
S.
,
Sieni
,
E.
, and
Sersa
,
G.
,
2019
, “
Electrochemotherapy–Emerging Applications Technical Advances, New Indications, Combined Approaches, and Multi-Institutional Collaboration
,”
Eur. J. Surg. Oncol.
,
45
(
2
), pp.
92
102
.10.1016/j.ejso.2018.11.023
62.
Latouche
,
E. L.
,
Arena
,
C. B.
,
Ivey
,
J. W.
,
Garcia
,
P. A.
,
Pancotto
,
T. E.
,
Pavlisko
,
N.
,
Verbridge
,
S. S.
,
Davalos
,
R. V.
, and
Rossmeisl
,
J. H.
,
2018
, “
High-Frequency Irreversible Electroporation for Intracranial Meningioma: A Feasibility Study in a Spontaneous Canine Tumor Model
,”
Technol. Cancer. Res. Treat.
,
17
, p.
153303381878528
.10.1177/1533033818785285
63.
Kanthou
,
C.
,
Kranjc
,
S.
,
Sersa
,
G.
,
Tozer
,
G.
,
Zupanic
,
A.
, and
Cemazar
,
M.
,
2006
, “
The Endothelial Cytoskeleton as a Target of Electroporation-Based Therapies
,”
Mol. Cancer Ther.
,
5
(
12
), pp.
3145
3152
.10.1158/1535-7163.MCT-06-0410
64.
Ivey
,
J. W.
,
Latouche
,
E. L.
,
Sano
,
M. B.
,
Rossmeisl
,
J. H.
,
Davalos
,
R. V.
, and
Verbridge
,
S. S.
,
2015
, “
Targeted Cellular Ablation Based on the Morphology of Malignant Cells
,”
Sci. Rep.
,
5
(
1
), p.
17157
.10.1038/srep17157
65.
Wasson
,
E. M.
,
Ivey
,
J. W.
,
Verbridge
,
S. S.
, and
Davalos
,
R. V.
,
2017
, “
The Feasibility of Enhancing Susceptibility of Glioblastoma Cells to IRE Using a Calcium Adjuvant
,”
Ann. Biomed. Eng.
,
45
(
11
), pp.
2535
2547
.10.1007/s10439-017-1905-6
66.
Weaver
,
J. C.
,
2003
, “
Electroporation of Biological Membranes From Multicellular to Nano Scales
,”
IEEE Trans. Dielect. El
,
10
(
5
), pp.
754
768
.10.1109/TDEI.2003.1237325
67.
Jiang
,
C.
,
Davalos
,
R. V.
, and
Bischof
,
J. C.
,
2015
, “
A Review of Basic to Clinical Studies of Irreversible Electroporation Therapy
,”
IEEE Trans. Biomed. Eng.
,
62
(
1
), pp.
4
20
.10.1109/TBME.2014.2367543
68.
Kotnik
,
T.
,
Rems
,
L.
,
Tarek
,
M.
, and
Miklavčič
,
D.
,
2019
, “
Membrane Electroporation and Electropermeabilization: Mechanisms and Models
,”
Annu. Rev. Biophys.
,
48
(
1
), pp.
63
91
.10.1146/annurev-biophys-052118-115451
69.
Kotnik
,
T.
,
Pucihar
,
G.
, and
Miklavčič
,
D.
,
2010
, “
Induced Transmembrane Voltage and Its Correlation With Electroporation-Mediated Molecular Transport
,”
J. Membr. Biol.
,
236
(
1
), pp.
3
13
.10.1007/s00232-010-9279-9
70.
DeBruin
,
K. A.
, and
Krassowska
,
W.
,
1999
, “
Modeling Electroporation in a Single Cell. I. Effects of Field Strength and Rest Potential
,”
Biophys. J.
,
77
(
3
), pp.
1213
1224
.10.1016/S0006-3495(99)76973-0
71.
Chang
,
D. C.
, and
Reese
,
T. S.
,
1990
, “
Changes in Membrane Structure Induced by Electroporation as Revealed by Rapid-Freezing Electron Microscopy
,”
Biophys. J.
,
58
(
1
), pp.
1
12
.10.1016/S0006-3495(90)82348-1
72.
Böckmann
,
R. A.
,
De Groot
,
B. L.
,
Kakorin
,
S.
,
Neumann
,
E.
, and
Grubmüller
,
H.
,
2008
, “
Kinetics, Statistics, and Energetics of Lipid Membrane Electroporation Studied by Molecular Dynamics Simulations
,”
Biophys. J.
,
95
(
4
), pp.
1837
1850
.10.1529/biophysj.108.129437
73.
Glaser
,
R. W.
,
Leikin
,
S. L.
,
Chernomordik
,
L. V.
,
Pastushenko
,
V. F.
, and
Sokirko
,
A. I.
,
1988
, “
Reversible Electrical Breakdown of Lipid Bilayers: Formation and Evolution of Pores Ralf W. Glaser, Sergei L. Leikin b, Leonid V. Chernomordik b, Vasili F. Pastushenko and Artjom I. Sokirko
,”
Biochim. Biophys. Acta
,
940
(
2
), pp.
275
287
.10.1016/0005-2736(88)90202-7
74.
Perrier
,
D. L.
,
Rems
,
L.
, and
Boukany
,
P. E.
,
2017
, “
Lipid Vesicles in Pulsed Electric Fields: Fundamental Principles of the Membrane Response and Its Biomedical Applications
,”
Adv. Colloid Interface
,
249
, pp.
248
71
.10.1016/j.cis.2017.04.016
75.
Sengel
,
J. T.
, and
Wallace
,
M. I.
,
2017
, “
Measuring the Potential Energy Barrier to Lipid Bilayer Electroporation
,”
Philos. Trans. R. Soc. B
,
372
(
1726
), p.
20160227
.10.1098/rstb.2016.0227
76.
Pucihar
,
G.
,
Miklavcic
,
D.
, and
Kotnik
,
T.
,
2009
, “
A Time-Dependent Numerical Model of Transmembrane Voltage Inducement and Electroporation of Irregularly Shaped Cells
,”
IEEE Trans. Biomed. Eng.
,
56
(
5
), pp.
1491
1501
.10.1109/TBME.2009.2014244
77.
Freeman
,
S. A.
,
Wang
,
M. A.
, and
Weaver
,
J. C.
,
1994
, “
Theory of Electroporation of Planar Bilayer Membranes: Predictions of the Aqueous Area, Change in Capacitance, and Pore-Pore Separation
,”
Biophys. J.
,
67
(
1
), pp.
42
56
.10.1016/S0006-3495(94)80453-9
78.
Kotnik
,
T.
,
Miklavčič
,
D.
, and
Slivnik
,
T.
,
1998
, “
Time Course of Transmembrane Voltage Induced by Time-Varying Electric Fields—a Method for Theoretical Analysis and Its Application
,”
Bioelectrochem. Bioenergy
,
45
(
1
), pp.
3
16
.10.1016/S0302-4598(97)00093-7
79.
Sengel
,
J. T.
, and
Wallace
,
M. I.
,
2016
, “
Imaging the Dynamics of Individual Electropores
,”
Proc. Natl. Acad. Sci.
,
113
(
19
), pp.
5281
5286
.10.1073/pnas.1517437113
80.
Vernier
,
P. T.
,
Sun
,
Y.
,
Marcu
,
L.
,
Craft
,
C. M.
, and
Gundersen
,
M. A.
,
2004
, “
Nanoelectropulse-Induced Phosphatidylserine Translocation
,”
Biophys. J.
,
86
(
6
), pp.
4040
4048
.10.1529/biophysj.103.037945
81.
Aycock
,
K. N.
, and
Davalos
,
R. V.
,
2019
, “
Irreversible Electroporation: Background, Theory, and Review of Recent Developments in Clinical Oncology
,”
Bioelectricity
,
1
(
4
), pp.
214
234
.10.1089/bioe.2019.0029
82.
Mercadal
,
B.
,
Vernier
,
P. T.
, and
Ivorra
,
A.
,
2016
, “
Dependence of Electroporation Detection Threshold on Cell Radius: An Explanation to Observations Non Compatible With Schwan's Equation Model
,”
J. Membr. Biol.
,
249
(
5
), pp.
663
676
.10.1007/s00232-016-9907-0
83.
Talele
,
S.
,
Gaynor
,
P.
,
Cree
,
M. J.
, and
Van Ekeran
,
J.
,
2010
, “
Modelling Single Cell Electroporation With Bipolar Pulse Parameters and Dynamic Pore Radii
,”
J. Electrostat.
,
68
(
3
), pp.
261
274
.10.1016/j.elstat.2010.02.001
84.
Neu
,
J. C.
,
Smith
,
K. C.
, and
Krassowska
,
W.
,
2003
, “
Electrical Energy Required to Form Large Conducting Pores
,”
Bioelectrochemistry
,
60
(
1–2
), pp.
107
114
.10.1016/S1567-5394(03)00051-3
85.
Neu
,
J. C.
, and
Krassowska
,
W.
,
1999
, “
Asymptotic Model of Electroporation
,”
Phys. Rev. E
,
59
(
3
), pp.
3471
3482
.10.1103/PhysRevE.59.3471
86.
Krassowska
,
W.
, and
Filev
,
P. D.
,
2007
, “
Modeling Electroporation in a Single Cell
,”
Biophys. J.
,
92
(
2
), pp.
404
417
.10.1529/biophysj.106.094235
87.
Abidor
,
I.
,
Arakelyan
,
V.
,
Chernomordik
,
L.
,
Chizmadzhev
,
Y. A.
,
Pastushenko
,
V.
, and
Tarasevich
,
M.
,
1979
, “
Electric Breakdown of Bilayer Lipid Membranes: I. The Main Experimental Facts and Their Qualitative Discussion
,”
J. Electroanal. Chem. Interface Electrochem.
,
104
, pp.
37
52
.10.1016/S0022-0728(79)81006-2
88.
Karal
,
M. A. S.
, and
Yamazaki
,
M.
,
2015
,
Communication: Activation Energy of Tension-Induced Pore Formation in Lipid Membranes
,
AIP Publishing LLC
, New York.
89.
Ho
,
S.
, and
Mittal
,
G. S.
,
1996
, “
Electroporation of Cell Membranes: A Review
,”
Crit. Rev. Biotechnol.
,
16
(
4
), pp.
349
362
.10.3109/07388559609147426
90.
Wohlert
,
J.
,
den Otter
,
W. K.
,
Edholm
,
O.
, and
Briels
,
W. J.
,
2006
, “
Free Energy of a Trans-Membrane Pore Calculated From Atomistic Molecular Dynamics Simulations
,”
J. Chem. Phys.
,
124
(
15
), p.
154905
.10.1063/1.2171965
91.
Chen
,
C.
,
Smye
,
S.
,
Robinson
,
M.
, and
Evans
,
J.
,
2006
, “
Membrane Electroporation Theories: A Review
,”
Med. Biol. Eng. Comput.
,
44
(
1–2
), pp.
5
14
.10.1007/s11517-005-0020-2
92.
Powell
,
K. T.
, and
Weaver
,
J. C.
,
1986
, “
Transient Aqueous Pores in Bilayer Membranes: A Statistical Theory
,”
Bioelectrochem. Bioenergy
,
15
(
2
), pp.
211
227
.10.1016/0302-4598(86)80029-0
93.
Efimov
,
I. R.
,
Kroll
,
M. W.
, and
Tchou
,
P.
,
2008
,
Cardiac Bioelectric Therapy: Mechanisms and Practical Implications
,
Springer Science & Business Media
, Berlin.
94.
Weaver
,
J. C.
,
Smith
,
K. C.
,
Esser
,
A. T.
,
Son
,
R. S.
, and
Gowrishankar
,
T.
,
2012
, “
A Brief Overview of Electroporation Pulse Strength–Duration Space: A Region Where Additional Intracellular Effects Are Expected
,”
Bioelectrochemistry
,
87
, pp.
236
43
.10.1016/j.bioelechem.2012.02.007
95.
Zhang
,
B.
,
Yang
,
Y.
,
Ding
,
L.
,
Moser
,
M. A.
,
Zhang
,
E. M.
, and
Zhang
,
W.
,
2019
, “
Tumor Ablation Enhancement by Combining Radiofrequency Ablation and Irreversible Electroporation: An In Vitro 3D Tumor Study
,”
Ann. Biomed. Eng.
,
47
(
3
), pp.
694
705
.10.1007/s10439-018-02185-x
96.
Yao
,
C.
,
Liu
,
H.
,
Zhao
,
Y.
,
Mi
,
Y.
,
Dong
,
S.
, and
Lv
,
Y.
,
2017
, “
Analysis of Dynamic Processes in Single-Cell Electroporation and Their Effects on Parameter Selection Based on the Finite-Element Model
,”
IEEE T Plasma Sci
,
45
(
5
), pp.
889
900
.10.1109/TPS.2017.2681433
97.
Sano
,
M. B.
,
Fan
,
R. E.
, and
Xing
,
L.
,
2017
, “
Asymmetric Waveforms Decrease Lethal Thresholds in High Frequency Irreversible Electroporation Therapies
,”
Sci. Rep.
,
7
(
1
), p.
40747
.10.1038/srep40747
98.
Miklovic
,
T.
,
Latouche
,
E. L.
,
DeWitt
,
M. R.
,
Davalos
,
R. V.
, and
Sano
,
M. B.
,
2017
, “
A Comprehensive Characterization of Parameters Affecting High-Frequency Irreversible Electroporation Lesions
,”
Ann. Biomed. Eng.
,
45
(
11
), pp.
2524
2534
.10.1007/s10439-017-1889-2
99.
Dunki‐Jacobs
,
E.
,
Philips
,
P.
, and
Martin Ii
,
R.
,
2014
, “
Evaluation of Thermal Injury to Liver, Pancreas and Kidney During Irreversible Electroporation in an In Vivo Experimental Model
,”
Brit. J. Surg.
,
101
(
9
), pp.
1113
1121
.10.1002/bjs.9536
100.
Scuderi
,
M.
,
Rebersek
,
M.
,
Miklavcic
,
D.
, and
Dermol-Cerne
,
J.
,
2019
, “
The Use of High-Frequency Short Bipolar Pulses in Cisplatin Electrochemotherapy In Vitro
,”
Radiol. Oncol.
,
53
(
2
), pp.
194
205
.10.2478/raon-2019-0025
101.
Gehl
,
J.
,
2003
, “
Electroporation: Theory and Methods, Perspectives for Drug Delivery, Gene Therapy and Research
,”
Acta Physiol.
,
177
(
4
), pp.
437
447
.10.1046/j.1365-201X.2003.01093.x
102.
Cervia
,
L. D.
,
Chang
,
C.-C.
,
Wang
,
L.
,
Mao
,
M.
, and
Yuan
,
F.
,
2018
, “
Enhancing Electrotransfection Efficiency Through Improvement in Nuclear Entry of Plasmid DNA
,”
Mol. Ther-Nucl. Acids
,
11
, pp.
263
271
.10.1016/j.omtn.2018.02.009
103.
Ball
,
C.
,
Thomson
,
K. R.
, and
Kavnoudias
,
H.
,
2010
, “
Irreversible Electroporation: A New Challenge in “Out of Operating Theater” Anesthesia
,”
Anesth. Analg.
,
110
(
5
), pp.
1305
1309
.10.1213/ANE.0b013e3181d27b30
104.
Siddiqui
,
I. A.
,
Latouche
,
E. L.
,
DeWitt
,
M. R.
,
Swet
,
J. H.
,
Kirks
,
R. C.
,
Baker
,
E. H.
,
Iannitti
,
D. A.
,
Vrochides
,
D.
,
Davalos
,
R. V.
, and
McKillop
,
I. H.
,
2016
, “
Induction of Rapid, Reproducible Hepatic Ablations Using Next-Generation, High Frequency Irreversible Electroporation (H-FIRE) In Vivo
,”
HPB
,
18
(
9
), pp.
726
734
.10.1016/j.hpb.2016.06.015
105.
Wang
,
H.
, and
Chen
,
Y.
,
2016
, “
Spatiotemporal Activities of Neural Network Exposed to External Electric Fields
,”
Nonlinear Dyn.
,
85
(
2
), pp.
881
891
.10.1007/s11071-016-2730-4
106.
Mercadal
,
B.
,
Arena
,
C. B.
,
Davalos
,
R. V.
, and
Ivorra
,
A.
,
2017
, “
Avoiding Nerve Stimulation in Irreversible Electroporation: A Numerical Modeling Study
,”
Phys. Med. Biol.
,
62
(
20
), pp.
8060
8079
.10.1088/1361-6560/aa8c53
107.
Arena
,
C. B.
,
Sano
,
M. B.
,
Rossmeisl
,
J. H.
,
Caldwell
,
J. L.
,
Garcia
,
P. A.
,
Rylander
,
M. N.
, and
Davalos
,
R. V.
,
2011
, “
High-Frequency Irreversible Electroporation (H-FIRE) for Non-Thermal Ablation Without Muscle Contraction
,”
Biomed. Eng. Online
,
10
(
1
), p.
102
.10.1186/1475-925X-10-102
108.
Sano
,
M. B.
,
Fan
,
R. E.
,
Cheng
,
K.
,
Saenz
,
Y.
,
Sonn
,
G. A.
,
Hwang
,
G. L.
, and
Xing
,
L.
,
2018
, “
Reduction of Muscle Contractions During Irreversible Electroporation Therapy Using High-Frequency Bursts of Alternating Polarity Pulses: A Laboratory Investigation in an Ex Vivo Swine Model
,”
J. Vasc. Interv. Radiol.
,
29
(
6
), pp.
893
898.
10.1016/j.jvir.2017.12.019
109.
Mercadal
,
B.
,
Beitel-White
,
N.
,
Aycock
,
K. N.
,
Castellví
,
Q.
,
Davalos
,
R. V.
, and
Ivorra
,
A.
,
2020
, “
Dynamics of Cell Death After Conventional IRE and H-FIRE Treatments
,”
Ann. Biomed. Eng.
,
48
(
5
), pp.
1451
1412
.10.1007/s10439-020-02462-8
110.
Yao
,
C.
,
Zhao
,
Y.
,
Mi
,
Y.
,
Dong
,
S.
,
Lv
,
Y.
,
Liu
,
H.
,
Wang
,
X.
, and
Tang
,
L.
,
2017
, “
Comparative Study of the Biological Responses to Conventional Pulse and High-Frequency Monopolar Pulse Bursts
,”
IEEE Trans. Plasma Sci.
,
45
(
10
), pp.
2629
2638
.10.1109/TPS.2017.2703091
111.
Dermol-Černe
,
J.
,
Napotnik
,
T. B.
,
Reberšek
,
M.
, and
Miklavčič
,
D.
,
2020
, “
Short Microsecond Pulses Achieve Homogeneous Electroporation of Elongated Biological Cells Irrespective of Their Orientation in Electric Field
,”
Sci. Rep.
,
10
(
1
), pp.
1
17
.10.1038/s41598-020-65830-3
112.
Sano
,
M. B.
,
Fesmire
,
C. C.
, and
Petrella
,
R. A.
,
2021
, “
Electro-Thermal Therapy Algorithms and Active Internal Electrode Cooling Reduce Thermal Injury in High Frequency Pulsed Electric Field Cancer Therapies
,”
Ann. Biomed. Eng.
,
49
(
1
), pp.
191
202
.10.1007/s10439-020-02524-x
113.
Abbott
,
N. J.
,
Patabendige
,
A. A.
,
Dolman
,
D. E.
,
Yusof
,
S. R.
, and
Begley
,
D. J.
,
2010
, “
Structure and Function of the Blood–Brain Barrier
,”
Neurobiol. Dis.
,
37
(
1
), pp.
13
25
.10.1016/j.nbd.2009.07.030
114.
Saraiva
,
C.
,
Praça
,
C.
,
Ferreira
,
R.
,
Santos
,
T.
,
Ferreira
,
L.
, and
Bernardino
,
L.
,
2016
, “
Nanoparticle-Mediated Brain Drug Delivery: Overcoming Blood–Brain Barrier to Treat Neurodegenerative Diseases
,”
J Control Release
,
235
, pp.
34
47
.10.1016/j.jconrel.2016.05.044
115.
Sharabi
,
S.
,
Kos
,
B.
,
Last
,
D.
,
Guez
,
D.
,
Daniels
,
D.
,
Harnof
,
S.
,
Mardor
,
Y.
, and
Miklavcic
,
D.
,
2016
, “
A Statistical Model Describing Combined Irreversible Electroporation and Electroporation-Induced Blood-Brain Barrier Disruption
,”
Radiol. Oncol.
,
50
(
1
), pp.
28
38
.10.1515/raon-2016-0009
116.
Sharabi
,
S.
,
Last
,
D.
,
Guez
,
D.
,
Daniels
,
D.
,
Hjouj
,
M. I.
,
Salomon
,
S.
,
Maor
,
E.
, and
Mardor
,
Y.
,
2014
, “
Dynamic Effects of Point Source Electroporation on the Rat Brain Tissue
,”
Bioelectrochemistry
,
99
, pp.
30
39
.10.1016/j.bioelechem.2014.06.001
117.
Neal
,
R.
,
Rossmeisl
,
J.
,
D'alfonso
,
V.
,
Robertson
,
J.
,
Garcia
,
P.
,
Elankumaran
,
S.
, and
Davalos
,
R.
,
2014
, “
In Vitro and Numerical Support for Combinatorial Irreversible Electroporation and Electrochemotherapy Glioma Treatment
,”
Ann. Biomed. Eng.
,
42
(
3
), pp.
475
487
.10.1007/s10439-013-0923-2
118.
Rossmeisl
,
J. H.
,
Garcia
,
P. A.
,
Pancotto
,
T. E.
,
Robertson
,
J. L.
,
Henao-Guerrero
,
N.
,
Neal
,
R. E.
,
Ellis
,
T. L.
, and
Davalos
,
R. V.
,
2015
, “
Safety and Feasibility of the NanoKnife System for Irreversible Electroporation Ablative Treatment of Canine Spontaneous Intracranial Gliomas
,”
J. Neurosurg.
,
123
(
4
), pp.
1008
1025
.10.3171/2014.12.JNS141768
119.
Heidner
,
G. L.
,
Kornegay
,
J. N.
,
Page
,
R. L.
,
Dodge
,
R. K.
, and
Thrall
,
D. E.
,
1991
, “
Analysis of Survival in a Retrospective Study of 86 Dogs With Brain Tumors
,”
J. Vet. Intern. Med.
,
5
(
4
), pp.
219
226
.10.1111/j.1939-1676.1991.tb00952.x
120.
Hu
,
H.
,
Barker
,
A.
,
Harcourt‐Brown
,
T.
, and
Jeffery
,
N.
,
2015
, “
Systematic Review of Brain Tumor Treatment in Dogs
,”
J. Vet. Intern. Med.
,
29
(
6
), pp.
1456
1463
.10.1111/jvim.13617
121.
Garcia
,
P.
,
Pancotto
,
T.
,
Rossmeisl
,
J. H.
, Jr.
,
Henao-Guerrero
,
N.
,
Gustafson
,
N.
,
Daniel
,
G.
,
Robertson
,
J.
,
Ellis
,
T.
, and
Davalos
,
R. V.
,
2011
, “
Non-Thermal Irreversible Electroporation (N-TIRE) and Adjuvant Fractionated Radiotherapeutic Multimodal Therapy for Intracranial Malignant Glioma in a Canine Patient
,”
Technol. Cancer Res. Treat.
,
10
(
1
), pp.
73
83
.10.7785/tcrt.2012.500181
122.
Ellis
,
T. L.
,
Garcia
,
P. A.
,
Rossmeisl
,
J. H.
,
Henao-Guerrero
,
N.
,
Robertson
,
J.
, and
Davalos
,
R. V.
,
2011
, “
Nonthermal Irreversible Electroporation for Intracranial Surgical Applications
,”
J. Neurosurg.
,
114
(
3
), pp.
681
688
.10.3171/2010.5.JNS091448
123.
Hjouj
,
M.
,
Last
,
D.
,
Guez
,
D.
,
Daniels
,
D.
,
Sharabi
,
S.
,
Lavee
,
J.
,
Rubinsky
,
B.
, and
Mardor
,
Y.
,
2012
, “
MRI Study on Reversible and Irreversible Electroporation Induced Blood Brain Barrier Disruption
,”
PLoS One
,
7
(
8
), p.
e42817
.10.1371/journal.pone.0042817
124.
Arena
,
C. B.
,
Sano
,
M. B.
,
Rossmeisl
,
J. H.
,
Caldwell
,
J. L.
,
Garcia
,
P. A.
,
Rylander
,
M. N.
, and
Davalos
,
R. V.
,
2011
, “
High-Frequency Irreversible Electroporation (H-FIRE) for Non-Thermal Ablation Without Muscle Contraction
,”
Biomed. Eng. Online
,
10
(
1
), pp.
1
21
.
125.
Rossmeisl
,
J. H.
,
Garcia
,
P. A.
,
Roberston
,
J. L.
,
Ellis
,
T. L.
, and
Davalos
,
R. V.
,
2013
, “
Pathology of Non-Thermal Irreversible Electroporation (N-TIRE)-Induced Ablation of the Canine Brain
,”
J. Vet. Sci.
,
14
(
4
), pp.
433
440
.10.4142/jvs.2013.14.4.433
126.
Rubinsky
,
B.
,
2007
, “
Irreversible Electroporation in Medicine
,”
Technol. Cancer Res. Treat.
,
6
(
4
), pp.
255
259
.10.1177/153303460700600401
127.
Garcia
,
P. A.
,
Rossmeisl
,
J. H.
,
Neal
,
R. E.
,
Ellis
,
T. L.
,
Olson
,
J. D.
,
Henao-Guerrero
,
N.
,
Robertson
,
J.
, and
Davalos
,
R. V.
,
2010
, “
Intracranial Nonthermal Irreversible Electroporation: In Vivo Analysis
,”
J. Membr. Biol.
,
236
(
1
), pp.
127
136
.10.1007/s00232-010-9284-z
128.
Cornelis
,
F. H.
,
Durack
,
J. C.
,
Kimm
,
S. Y.
,
Wimmer
,
T.
,
Coleman
,
J. A.
,
Solomon
,
S. B.
, and
Srimathveeravalli
,
G.
,
2017
, “
A Comparative Study of Ablation Boundary Sharpness After Percutaneous Radiofrequency, Cryo-, Microwave, and Irreversible Electroporation Ablation in Normal Swine Liver and Kidneys
,”
Cardiovasc. Intervent. Radiol.
,
40
(
10
), pp.
1600
8
.10.1007/s00270-017-1692-3
129.
Ivey
,
J.
,
Wasson
,
E.
,
Alinezhadbalalami
,
N.
,
Kanitkar
,
A.
,
Debinski
,
W.
,
Sheng
,
Z.
,
Davalos
,
R.
, and
Verbridge
,
S.
,
2019
, “
Characterization of Ablation Thresholds for 3D-Cultured Patient-Derived Glioma Stem Cells in Response to High-Frequency Irreversible Electroporation
,”
Research
,
2019
, pp.
1
14
.10.34133/2019/8081315
130.
Garcia
,
P. A.
,
Neal
,
R. E.
,
Rossmeisl
,
J. H.
, and
Davalos
,
R. V.
,
2010
, “
Non-Thermal Irreversible Electroporation for Deep Intracranial Disorders
,”
Annual International Conference of the IEEE Engineering in Medicine and Biology
,
Buenos Aires, Argentina
, Aug. 31–Sept. 4, pp.
2743
2746
.10.1109/IEMBS.2010.5626371
131.
Garcia
,
P. A.
,
Kos
,
B.
,
Rossmeisl
,
J. H.
, Jr
Pavliha
,
D.
,
Miklavčič
,
D.
, and
Davalos
,
R. V.
,
2017
, “
Predictive Therapeutic Planning for Irreversible Electroporation Treatment of Spontaneous Malignant Glioma
,”
Med. Phys.
,
44
(
9
), pp.
4968
4980
.10.1002/mp.12401
132.
Garcia
,
P. A.
,
Rossmeisl
,
J. H.
,
Robertson
,
J.
,
Ellis
,
T. L.
, and
Davalos
,
R. V.
,
2009
, “
Pilot Study of Irreversible Electroporation for Intracranial Surgery
,”
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
,
St. Paul, MN
, Sept. 2–6, pp.
6513
6516
.10.1109/IEMBS.2009.5333141
133.
Abbott
,
N. J.
,
2013
, “
Blood–Brain Barrier Structure and Function and the Challenges for CNS Drug Delivery
,”
J. Inherit. Metab. Dis.
,
36
(
3
), pp.
437
449
.10.1007/s10545-013-9608-0
134.
Tajes
,
M.
,
Ramos-Fernández
,
E.
,
Weng-Jiang
,
X.
,
Bosch-Morató
,
M.
,
Guivernau
,
B.
,
Eraso-Pichot
,
A.
,
Salvador
,
B.
,
Fernàndez-Busquets
,
X.
,
Roquer
,
J.
, and
Muñoz
,
F. J.
,
2014
, “
The Blood-Brain Barrier: Structure, Function and Therapeutic Approaches to Cross It
,”
Mol. Membr. Biol.
,
31
(
5
), pp.
152
167
.10.3109/09687688.2014.937468
135.
Isobe
,
I.
,
Watanabe
,
T.
,
Yotsuyanagi
,
T.
,
Hazemoto
,
N.
,
Yamagata
,
K.
,
Ueki
,
T.
,
Nakanishi
,
K.
,
Asai
,
K.
, and
Kato
,
T.
,
1996
, “
Astrocytic Contributions to Blood-Brain Barrier (BBB) Formation by Endothelial Cells: A Possible Use of Aortic Endothelial Cell for In Vitro BBB Model
,”
Neurochem. Int.
,
28
(
5–6
), pp.
523
533
.10.1016/0197-0186(95)00142-5
136.
Stamatovic
,
S. M.
,
Keep
,
R. F.
, and
Andjelkovic
,
A. V.
,
2008
, “
Brain Endothelial Cell-Cell Junctions: How to “Open” the Blood Brain Barrier
,”
Curr. Neuropharmacol.
,
6
(
3
), pp.
179
192
.10.2174/157015908785777210
137.
Pardridge
,
W. M.
,
2003
, “
Blood-Brain Barrier Drug Targeting: The Future of Brain Drug Development
,”
Mol. Interv.
,
3
(
2
), pp.
90
105
.10.1124/mi.3.2.90
138.
Pardridge
,
W. M.
,
2005
, “
The Blood-Brain Barrier: Bottleneck in Brain Drug Development
,”
NeuroRx
,
2
(
1
), pp.
3
14
.10.1602/neurorx.2.1.3
139.
Xu
,
L.
,
Nirwane
,
A.
, and
Yao
,
Y.
,
2019
, “
Basement Membrane and Blood–Brain Barrier
,”
Stroke Vaac. Neurol.
,
4
(
2
), pp.
78
82
.10.1136/svn-2018-000198
140.
Thomsen
,
M. S.
,
Routhe
,
L. J.
, and
Moos
,
T.
,
2017
, “
The Vascular Basement Membrane in the Healthy and Pathological Brain
,”
J. Cerebr. Blood F Met.
,
37
(
10
), pp.
3300
3317
.10.1177/0271678X17722436
141.
Armulik
,
A.
,
Genové
,
G.
,
Mäe
,
M.
,
Nisancioglu
,
M. H.
,
Wallgard
,
E.
,
Niaudet
,
C.
,
He
,
L.
,
Norlin
,
J.
,
Lindblom
,
P.
,
Strittmatter
,
K.
,
Johansson
,
B. R.
, and
Betsholtz
,
C.
,
2010
, “
Pericytes Regulate the Blood–Brain Barrier
,”
Nature
,
468
(
7323
), pp.
557
561
.10.1038/nature09522
142.
Winkler
,
E. A.
,
Bell
,
R. D.
, and
Zlokovic
,
B. V.
,
2011
, “
Central Nervous System Pericytes in Health and Disease
,”
Nat. Neurosci.
,
14
(
11
), pp.
1398
1405
.10.1038/nn.2946
143.
Janzer
,
R. C.
, and
Raff
,
M. C.
,
1987
, “
Astrocytes Induce Blood–Brain Barrier Properties in Endothelial Cells
,”
Nature
,
325
(
6101
), pp.
253
257
.10.1038/325253a0
144.
Muldoon
,
L. L.
,
Soussain
,
C.
,
Jahnke
,
K.
,
Johanson
,
C.
,
Siegal
,
T.
,
Smith
,
Q. R.
,
Hall
,
W. A.
,
Hynynen
,
K.
,
Senter
,
P. D.
,
Peereboom
,
D. M.
, and
Neuwelt
,
E. A.
,
2007
, “
Chemotherapy Delivery Issues in Central Nervous System Malignancy: A Reality Check
,”
J. Clin. Oncol.
,
25
(
16
), pp.
2295
2305
.10.1200/JCO.2006.09.9861
145.
Clayton
,
A. J.
,
Danson
,
S.
,
Jolly
,
S.
,
Ryder
,
W. D. J.
,
Burt
,
P. A.
,
Stewart
,
A. L.
,
Wilkinson
,
P. M.
,
Welch
,
R. S.
,
Magee
,
B.
,
Wilson
,
G.
,
Howell
,
A.
, and
Wardley
,
A. M.
,
2004
, “
Incidence of Cerebral Metastases in Patients Treated With Trastuzumab for Metastatic Breast Cancer
,”
Brit. J. Cancer
,
91
(
4
), pp.
639
43
.10.1038/sj.bjc.6601970
146.
Markelc
,
B.
,
Bellard
,
E.
,
Sersa
,
G.
,
Jesenko
,
T.
,
Pelofy
,
S.
,
Teissié
,
J.
,
Frangez
,
R.
,
Rols
,
M.-P.
,
Cemazar
,
M.
, and
Golzio
,
M.
,
2018
, “
Increased Permeability of Blood Vessels After Reversible Electroporation is Facilitated by Alterations in Endothelial Cell-to-Cell Junctions
,”
J Control Release
,
276
, pp.
30
41
.10.1016/j.jconrel.2018.02.032
147.
Sharabi
,
S.
,
Bresler
,
Y.
,
Ravid
,
O.
,
Shemesh
,
C.
,
Atrakchi
,
D.
,
Schnaider-Beeri
,
M.
,
Gosselet
,
F.
,
Dehouck
,
L.
,
Last
,
D.
,
Guez
,
D.
,
Daniels
,
D.
,
Mardor
,
Y.
, and
Cooper
,
I.
,
2019
, “
Transient Blood–Brain Barrier Disruption is Induced by Low Pulsed Electrical Fields In Vitro: An Analysis of Permeability and Trans-Endothelial Electric Resistivity
,”
Drug Deliv.
,
26
(
1
), pp.
459
469
.10.1080/10717544.2019.1571123
148.
Arena
,
C. B.
,
Garcia
,
P. A.
,
Sano
,
M. B.
,
Olson
,
J. D.
,
Rogers-Cotrone
,
T.
,
Rossmeisl
,
J. H.
, Jr.
, and
Davalos
,
R. V.
,
2014
, “
Focal Blood-Brain-Barrier Disruption With High-Frequency Pulsed Electric Fields
,”
Technology
,
02
(
03
), pp.
206
213
.10.1142/S2339547814500186
149.
Steuer
,
A.
,
Schmidt
,
A.
,
Labohá
,
P.
,
Babica
,
P.
, and
Kolb
,
J. F.
,
2016
, “
Transient Suppression of Gap Junctional Intercellular Communication After Exposure to 100-Nanosecond Pulsed Electric Fields
,”
Bioelectrochemistry
,
112
, pp.
33
46
.10.1016/j.bioelechem.2016.07.003
150.
Dasgupta
,
A.
,
Liu
,
M.
,
Ojha
,
T.
,
Storm
,
G.
,
Kiessling
,
F.
, and
Lammers
,
T.
,
2016
, “
Ultrasound-Mediated Drug Delivery to the Brain: Principles, Progress and Prospects
,”
Drug Discov. Today: Technol.
,
20
, pp.
41
48
.10.1016/j.ddtec.2016.07.007
151.
Jalali
,
S.
,
Huang
,
Y.
,
Dumont
,
D. J.
, and
Hynynen
,
K.
,
2010
, “
Focused Ultrasound-Mediated Bbb Disruption is Associated With an Increase in Activation of AKT: Experimental Study in Rats
,”
BMC Neurol.
,
10
(
1
), pp.
1
10
.10.1186/1471-2377-10-114
152.
Bing
,
K. F.
,
Howles
,
G. P.
,
Qi
,
Y.
,
Palmeri
,
M. L.
, and
Nightingale
,
K. R.
,
2009
, “
Blood-Brain Barrier (BBB) Disruption Using a Diagnostic Ultrasound Scanner and Definity® in Mice
,”
Ultrasound Med. Biol.
,
35
(
8
), pp.
1298
1308
.10.1016/j.ultrasmedbio.2009.03.012
153.
Carpentier
,
A.
,
Canney
,
M.
,
Vignot
,
A.
,
Reina
,
V.
,
Beccaria
,
K.
,
Horodyckid
,
C.
,
Karachi
,
C.
,
Leclercq
,
D.
,
Lafon
,
C.
,
Chapelon
,
J.-Y.
,
Capelle
,
L.
,
Cornu
,
P.
,
Sanson
,
M.
,
Hoang-Xuan
,
K.
,
Delattre
,
J.-Y.
, and
Idbaih
,
A.
,
2016
, “
Clinical Trial of Blood-Brain Barrier Disruption by Pulsed Ultrasound
,”
Sci. Transl. Med.
,
8
(
343
), p.
343re2
.10.1126/scitranslmed.aaf6086
154.
Burgess
,
A.
,
Shah
,
K.
,
Hough
,
O.
, and
Hynynen
,
K.
,
2015
, “
Focused Ultrasound-Mediated Drug Delivery Through the Blood–Brain Barrier
,”
Exp. Rev. Neurother.
,
15
(
5
), pp.
477
491
.10.1586/14737175.2015.1028369
155.
Deng
,
C. X.
,
2010
, “
Targeted Drug Delivery Across the Blood–Brain Barrier Using Ultrasound Technique
,”
Ther. Deliv.
,
1
(
6
), pp.
819
848
.10.4155/tde.10.66
156.
Haluska
,
M.
, and
Anthony
,
M. L.
,
2004
, “
Osmotic Blood-Brain Barrier Modification for the Treatment of Malignant Brain Tumors
,”
Clin. J. Oncol. Nurs.
,
8
(
3
), pp.
263
267
.http://www.ajnr.org/content/ajnr/4/4/907.full.pdf
157.
Chakraborty
,
S.
,
Filippi
,
C. G.
,
Wong
,
T.
,
Ray
,
A.
,
Fralin
,
S.
,
Tsiouris
,
A. J.
,
Praminick
,
B.
,
Demopoulos
,
A.
,
McCrea
,
H. J.
,
Bodhinayake
,
I.
,
Ortiz
,
R.
,
Langer
,
D. J.
, and
Boockvar
,
J. A.
,
2016
, “
Superselective Intraarterial Cerebral Infusion of Cetuximab After Osmotic Blood/Brain Barrier Disruption for Recurrent Malignant Glioma: Phase I Study
,”
J. Neuro-Oncol.
,
128
(
3
), pp.
405
15
.10.1007/s11060-016-2099-8
158.
Chu
,
C.
,
Jablonska
,
A.
,
Lesniak
,
W. G.
,
Thomas
,
A. M.
,
Lan
,
X.
,
Linville
,
R. M.
,
Li
,
S.
,
Searson
,
P. C.
,
Liu
,
G.
,
Pearl
,
M.
,
Pomper
,
M. G.
,
Janowski
,
M.
,
Magnus
,
T.
, and
Walczak
,
P.
,
2020
, “
Optimization of Osmotic Blood-Brain Barrier Opening to Enable Intravital Microscopy Studies on Drug Delivery in Mouse Cortex
,”
J. Control Release
,
317
, pp.
312
321
.10.1016/j.jconrel.2019.11.019
159.
Zhang
,
F.
,
Xu
,
C.-L.
, and
Liu
,
C.-M.
,
2015
, “
Drug Delivery Strategies to Enhance the Permeability of the Blood–Brain Barrier for Treatment of Glioma
,”
Drug Des. Dev. Ther.
,
9
, p.
2089
.10.2147/DDDT.S79592
160.
Gong
,
W.
,
Wang
,
Z.
,
Liu
,
N.
,
Lin
,
W.
,
Wang
,
X.
,
Xu
,
D.
,
Liu
,
H.
,
Zeng
,
C.
,
Xie
,
X.
,
Mei
,
X.
, and
,
W.
,
2011
, “
Improving Efficiency of Adriamycin Crossing Blood Brain Barrier by Combination of Thermosensitive Liposomes and Hyperthermia
,”
Biol. Pharm. Bull.
,
34
(
7
), pp.
1058
1064
.10.1248/bpb.34.1058
161.
Patel
,
B.
,
Yang
,
P. H.
, and
Kim
,
A. H.
,
2020
, “
The Effect of Thermal Therapy on the Blood-Brain Barrier and Blood-Tumor Barrier
,”
Int. J. Hyperthermia
,
37
(
2
), pp.
35
43
.10.1080/02656736.2020.1783461
162.
Pawlowski
,
N. A.
,
Kaplan
,
G.
,
Abraham
,
E.
, and
Cohn
,
Z. A.
,
1988
, “
The Selective Binding and Transmigration of Monocytes Through the Junctional Complexes of Human Endothelium
,”
J. Exp. Med.
,
168
(
5
), pp.
1865
1882
.10.1084/jem.168.5.1865
163.
Alyautdin
,
R.
,
Khalin
,
I.
,
Nafeeza
,
M. I.
,
Haron
,
M. H.
, and
Kuznetsov
,
D.
,
2014
, “
Nanoscale Drug Delivery Systems and the Blood–Brain Barrier
,”
Int. J. Nanomed.
,
9
, p.
795
.10.2147/IJN.S52236
164.
Su
,
Y.
,
Xie
,
Z.
,
Kim
,
G. B.
,
Dong
,
C.
, and
Yang
,
J.
,
2015
, “
Design Strategies and Applications of Circulating Cell-Mediated Drug Delivery Systems
,”
ACS Biomater. Sci. Eng.
,
1
(
4
), pp.
201
17
.10.1021/ab500179h
165.
Hirschberg
,
H.
, and
Madsen
,
S. J.
,
2017
, “
Cell Mediated Photothermal Therapy of Brain Tumors
,”
J. Neuroimmune Pharm.
,
12
(
1
), pp.
99
106
.10.1007/s11481-016-9690-9
166.
Ibarra
,
L. E.
,
Beaugé
,
L.
,
Arias-Ramos
,
N.
,
Rivarola
,
V. A.
,
Chesta
,
C. A.
,
López-Larrubia
,
P.
, and
Palacios
,
R. E.
,
2020
, “
Trojan Horse Monocyte-Mediated Delivery of Conjugated Polymer Nanoparticles for Improved Photodynamic Therapy of Glioblastoma
,”
Nanomedicine
,
15
(
17
), pp.
1687
1707
.10.2217/nnm-2020-0106
167.
Guidotti
,
G.
,
Brambilla
,
L.
, and
Rossi
,
D.
,
2017
, “
Cell-Penetrating Peptides: From Basic Research to Clinics
,”
Trends Pharmacol. Sci.
,
38
(
4
), pp.
406
424
.10.1016/j.tips.2017.01.003
168.
Zhu
,
X.
,
Jin
,
K.
,
Huang
,
Y.
, and
Pang
,
Z.
,
2019
, “
Brain Drug Delivery by Adsorption-Mediated Transcytosis
,”
Brain Targeted Drug Delivery System
,
Elsevier
, Amsterdam, The Netherlands, pp.
159
183
.
169.
Gabathuler
,
R.
,
2010
, “
Approaches to Transport Therapeutic Drugs Across the Blood–Brain Barrier to Treat Brain Diseases
,”
Neurobiol. Dis.
,
37
(
1
), pp.
48
57
.10.1016/j.nbd.2009.07.028
170.
Hervé
,
F.
,
Ghinea
,
N.
, and
Scherrmann
,
J.-M.
,
2008
, “
CNS Delivery Via Adsorptive Transcytosis
,”
AAPS J.
,
10
(
3
), pp.
455
472
.10.1208/s12248-008-9055-2
171.
Yang
,
T.
,
Martin
,
P.
,
Fogarty
,
B.
,
Brown
,
A.
,
Schurman
,
K.
,
Phipps
,
R.
,
Yin
,
V. P.
,
Lockman
,
P.
, and
Bai
,
S.
,
2015
, “
Exosome Delivered Anticancer Drugs Across the Blood-Brain Barrier for Brain Cancer Therapy in Danio rerio
,”
Pharm. Res.
,
32
(
6
), pp.
2003
2014
.10.1007/s11095-014-1593-y
172.
Fang
,
F.
,
Zou
,
D.
,
Wang
,
W.
,
Yin
,
Y.
,
Yin
,
T.
,
Hao
,
S.
,
Wang
,
B.
,
Wang
,
G.
, and
Wang
,
Y.
,
2017
, “
Non-Invasive Approaches for Drug Delivery to the Brain Based on the Receptor Mediated Transport
,”
Mat. Sci. Eng. C
,
76
, pp.
1316
1327
.10.1016/j.msec.2017.02.056
173.
Pulgar
,
V. M.
,
2018
, “
Transcytosis to Cross the Blood Brain Barrier, New Advancements and Challenges
,”
Front. Neurosci.
,
12
, p.
1019
.10.3389/fnins.2018.01019
174.
Lajoie
,
J. M.
, and
Shusta
,
E. V.
,
2015
, “
Targeting Receptor-Mediated Transport for Delivery of Biologics Across the Blood-Brain Barrier
,”
Annu. Rev. Pharmacol.
,
55
(
1
), pp.
613
631
.10.1146/annurev-pharmtox-010814-124852
175.
Large
,
D. E.
,
Soucy
,
J. R.
,
Hebert
,
J.
, and
Auguste
,
D. T.
,
2019
, “
Advances in Receptor‐Mediated, Tumor‐Targeted Drug Delivery
,”
Adv. Ther.
,
2
(
1
), p.
1800091
.10.1002/adtp.201800091
176.
Bourassa
,
P.
,
Alata
,
W.
,
Tremblay
,
C.
,
Paris-Robidas
,
S.
, and
Calon
,
F. D R.
,
2019
, “
Transferrin Receptor-Mediated Uptake at the Blood–Brain Barrier is Not Impaired by Alzheimer's Disease Neuropathology
,”
Mol. Pharmaceut.
,
16
(
2
), pp.
583
594
.10.1021/acs.molpharmaceut.8b00870
177.
Kalvass
,
J.
,
Polli
,
J.
,
Bourdet
,
D.
,
Feng
,
B.
,
Huang
,
S. M.
,
Liu
,
X.
,
Smith
,
Q.
,
Zhang
,
L.
,
Zamek‐Gliszczynski
,
M.
, and
Consortium
,
I. T.
,
2013
, “
Why Clinical Modulation of Efflux Transport at the Human Blood–Brain Barrier is Unlikely: The ITC Evidence‐Based Position
,”
Clin. Pharmacol. Ther.
,
94
(
1
), pp.
80
94
.10.1038/clpt.2013.34
178.
Parrish
,
K. E.
,
Pokorny
,
J.
,
Mittapalli
,
R. K.
,
Bakken
,
K.
,
Sarkaria
,
J. N.
, and
Elmquist
,
W. F.
,
2015
, “
Efflux Transporters at the Blood-Brain Barrier Limit Delivery and Efficacy of Cyclin-Dependent Kinase 4/6 Inhibitor Palbociclib (PD-0332991) in an Orthotopic Brain Tumor Model
,”
J. Pharmacol. Exp. Ther.
,
355
(
2
), pp.
264
271
.10.1124/jpet.115.228213
179.
Miller
,
D. S.
,
2015
, “
Regulation of ABC Transporters Blood–Brain Barrier: The Good, the Bad, and the Ugly
,”
Advanced Cancer Research
,
Elsevier
, Amsterdam, The Netherlands, pp.
43
70
.
180.
Tournier
,
N.
,
Goutal
,
S.
,
Auvity
,
S.
,
Traxl
,
A.
,
Mairinger
,
S.
,
Wanek
,
T.
,
Helal
,
O.-B.
,
Buvat
,
I.
,
Soussan
,
M.
,
Caillé
,
F.
, and
Langer
,
O.
,
2017
, “
Strategies to Inhibit ABCB1-and ABCG2-Mediated Efflux Transport of Erlotinib at the Blood–Brain Barrier: A PET Study on Nonhuman Primates
,”
J. Nucl. Med.
,
58
(
1
), pp.
117
122
.10.2967/jnumed.116.178665
181.
Grassl
,
S. M.
,
2001
,
Mechanisms of Carrier-Mediated Transport: Facilitated Diffusion, Cotransport, and Countertransport
,
Cell Physiology Source Book
,
Elsevier
, Amsterdam, The Netherlands, pp.
249
259
.
182.
Pulicherla
,
K.
, and
Verma
,
M. K.
,
2015
, “
Targeting Therapeutics Across the Blood Brain Barrier (BBB), Prerequisite Towards Thrombolytic Therapy for Cerebrovascular Disorders—an Overview and Advancements
,”
AAPS Pharmscitech
,
16
(
2
), pp.
223
233
.10.1208/s12249-015-0287-z
183.
Khan
,
N. U.
,
Miao
,
T.
,
Ju
,
X.
,
Guo
,
Q.
, and
Han
,
L.
,
2019
, “
Carrier-Mediated Transportation Through BBB
,”
Brain Targeted Drug Delivery System
,
Elsevier
, Amsterdam, The Netherlands, pp.
129
158
.
184.
Lawther
,
B. K.
,
Kumar
,
S.
, and
Krovvidi
,
H.
,
2011
, “
Blood–Brain Barrier
,”
CEACCP
,
11
(
4
), pp.
128
132
.10.1093/bjaceaccp/mkr018
185.
Madruga
,
G.
,
Crivellenti
,
L.
,
Borin-Crivellenti
,
S.
,
Cintra
,
C.
,
Gomes
,
L.
, and
Spiller
,
P.
,
2017
, “
Comparative Use of Dimethyl Sulphoxide (DMSO) in Different Animal Species
,”
Vet. Med.
,
62
(
4
), pp.
179
185
.10.17221/176/2015-VETMED
186.
Bisht
,
R.
,
2011
, “
Brain Drug Delivery System: A Comprehensive Review on Recent Experimental and Clinical Findings
,”
Int. J. Pharml. Sci. Res.
,
2
(
4
), p.
792
.10.13040/IJPSR.0975-8232.2(4).792-06
187.
Bonakdar
,
M.
,
Graybill
,
P.
, and
Davalos
,
R.
,
2017
, “
A Microfluidic Model of the Blood–Brain Barrier to Study Permeabilization by Pulsed Electric Fields
,”
RSC Adv.
,
7
(
68
), pp.
42811
42818
.10.1039/C7RA07603G
188.
Lopez-Quintero
,
S.
,
Datta
,
A.
,
Amaya
,
R.
,
Elwassif
,
M.
,
Bikson
,
M.
, and
Tarbell
,
J.
,
2010
, “
DBS-Relevant Electric Fields Increase Hydraulic Conductivity of In Vitro Endothelial Monolayers
,”
J. Neural Eng.
,
7
(
1
), p.
016005
.10.1088/1741-2560/7/1/016005
189.
Bonakdar
,
M.
,
Wasson
,
E. M.
,
Lee
,
Y. W.
, and
Davalos
,
R. V.
,
2016
, “
Electroporation of Brain Endothelial Cells on Chip Toward Permeabilizing the Blood-Brain Barrier
,”
Biophys. J.
,
110
(
2
), pp.
503
513
.10.1016/j.bpj.2015.11.3517
190.
Lorenzo
,
M. F.
,
Thomas
,
S. C.
,
Kani
,
Y.
,
Hinckley
,
J.
,
Lee
,
M.
,
Adler
,
J.
,
Verbridge
,
S. S.
,
Hsu
,
F.-C.
,
Robertson
,
J. L.
,
Davalos
,
R. V.
, and
Rossmeisl
,
J. H.
,
2019
, “
Temporal Characterization of Blood–Brain Barrier Disruption With High-Frequency Electroporation
,”
Cancers
,
11
(
12
), p.
1850
.10.3390/cancers11121850
191.
Beebe
,
S. J.
,
Fox
,
P. M.
,
Rec
,
L. J.
,
Willis
,
L. K.
, and
Schoenbach
,
K. H.
,
2003
, “
Nanosecond, High‐Intensity Pulsed Electric Fields Induce Apoptosis in Human Cells
,”
Faseb J.
,
17
(
11
), pp.
1
23
.10.1096/fj.02-0859fje
192.
Sharabi
,
S.
,
Guez
,
D.
,
Daniels
,
D.
,
Cooper
,
I.
,
Atrakchi
,
D.
,
Liraz-Zaltsman
,
S.
,
Last
,
D.
, and
Mardor
,
Y.
,
2020
, “
The Application of Point Source Electroporation and Chemotherapy for the Treatment of Glioma: A Randomized Controlled Rat Study
,”
Sci. Rep.
,
10
(
1
), pp.
1
12
.10.1038/s41598-020-59152-7
193.
Garcia
,
P. A.
,
Rossmeisl
,
J. H.
, Jr.
,
Robertson
,
J. L.
,
Olson
,
J. D.
,
Johnson
,
A. J.
,
Ellis
,
T. L.
, and
Davalos
,
R. V.
,
2012
, “
7.0-T Magnetic Resonance Imaging Characterization of Acute Blood-Brain-Barrier Disruption Achieved With Intracranial Irreversible Electroporation
,”
PLoS One
,
7
(
11
), p.
e50482
.10.1371/journal.pone.0050482
194.
Mendes
,
M.
,
Sousa
,
J. J.
,
Pais
,
A.
, and
Vitorino
,
C.
,
2018
, “
Targeted Theranostic Nanoparticles for Brain Tumor Treatment
,”
Pharmaceutics,
10
(
4
), p.
181
.
195.
Neal
,
R. E.
, II
,
Rossmeisl
,
J. H.
, Jr.
,
Garcia
,
P. A.
,
Lanz
,
O. I.
,
Henao-Guerrero
,
N.
, and
Davalos
,
R. V.
,
2011
, “
Successful Treatment of a Large Soft Tissue Sarcoma With Irreversible Electroporation
,”
J. Clin. Oncol.
,
29
(
13
), pp.
372
377
.10.1200/JCO.2010.33.0902
196.
Ahn, S. I., Sei, Y. J., Park, H. J., Kim, J., Ryu, Y., Choi, J. J., Sung, H. J., MacDonald, A. L., and Kim, Y.
,
2020
, “Microengineered Human Blood-Brain Barrier Platform for Understanding Nanoparticle Transport Mechanisms,”
Nat. Commun.
, 11(1), pp. 1–12. 10.1038/s41467-019-13896-7
197.
Serša
,
I.
,
Kranjc
,
M.
, and
Miklavčič
,
D.
,
2015
, “
Current Density Imaging Sequence for Monitoring Current Distribution During Delivery of Electric Pulses in Irreversible Electroporation
,”
Biomed. Eng. Online
,
14
(
Suppl. 3
), p.
S6
.10.1186/1475-925X-14-S3-S6
198.
Van Tellingen, O., Yetkin-Arik, B., De Gooijer, M. C., Wesseling, P., Wurdinger, T., and De Vries, H. E.
,
2015
, “Overcoming the Blood-Brain Tumor Barrier for Effective Glioblastoma Treatment,”
Drug Resist. Update.
, 19, pp. 1–12. 10.1016/j.drup.2015.02.002
199.
Karki, K., Ewing, J. R., and Ali, M. M.
,
2016
, “Targeting Glioma With a Dual Mode Optical and Paramagnetic Nanoprobe Across the Blood-Brain Tumor Barrier,”
J. Nanomed. Nanotechnol.
, 7(4), p. 395. 10.4172/2157-7439.1000395
200.
Belykh, E., Shaffer, K. V., Lin, C., Byvaltsev, V. A., Preul, M. C., and Chen, L.
,
2020
, “Blood-Brain Barrier, Blood-Brain Tumor Barrier, and Fluorescence-Guided Neurosurgical Oncology: Delivering Optical Labels to Brain Tumors,”
Front. Oncol.
, 10, p. 739. 10.3389/fonc.2020.00739
You do not currently have access to this content.