Abstract

Vascular smooth muscle cells (VSMCs) are the most prevalent cells in the arterial wall. In vivo, arteries are exposed to dynamic biaxial loads; thus, when characterizing VSMC mechanics, it is important to determine their anisotropic and time-dependent mechanical properties. In this work, we use cellular microbiaxial stretching to apply complex deformations to single micropatterned VSMCs and measure the resulting changes in cell stress. Previously, cellular microbiaxial stretching has been used to measure VSMC mechanical properties in response to extensional strain. Here, we measure changes in cell stress in response to both extension and compression. Additionally, we measure immediate temporal changes in stress in response to cyclically applied deformations. We find that the VSMCs display clear hysteresis when incrementally stretched and compressed and demonstrate cycle-dependent stress-relaxation when exposed to cyclic step change extension and compression. Finally, we demonstrate that a Hill-type active fiber model is capable of replicating all observed hysteresis and cycle-dependent stress-relaxation, suggesting that the temporal stress–strain behavior of the cell is regulated by acto-myosin contraction and relaxation, rather than passive viscoelasticity. This study improves upon previous studies of cellular mechanical properties by considering cellular architecture and more complex deformations when measuring the time-dependent mechanical properties of VSMCs. These findings have important implications for modeling in mechanobiology as VSMCs are mechanosensitive and actively respond to changes in their mechanical environment to maintain vascular function.

References

1.
Bell
,
V.
,
Mitchell
,
W. A.
,
Sigurðsson
,
S.
,
Westenberg
,
J. J. M.
,
Gotal
,
J. D.
,
Torjesen
,
A. A.
,
Aspelund
,
T.
,
Launer
,
L. J.
,
de Roos
,
A.
,
Gudnason
,
V.
,
Harris
,
T. B.
, and
Mitchell
,
G. F.
,
2014
, “
Longitudinal and Circumferential Strain of the Proximal Aorta
,”
J. Am. Heart Assoc.
,
3
(
6
), pp.
1
11
10.1161/JAHA.114.001536.
2.
Draney
,
M. T.
,
Herfkens
,
R. J.
,
Hughes
,
T. J. R.
,
Pelc
,
N. J.
,
Wedding
,
K. L.
,
Zarins
,
C. K.
, and
Taylor
,
C. A.
,
2002
, “
Quantification of Vessel Wall Cyclic Strain Using Cine Phase Contrast Magnetic Resonance Imaging
,”
Ann. Biomed. Eng.
,
30
(
8
), pp.
1033
1045
.10.1114/1.1513566
3.
Dobrin
,
P. B.
,
1978
, “
Mechanical Properties of Arteries
,”
Physiol. Rev.
,
58
(
2
), pp.
397
460
.10.1152/physrev.1978.58.2.397
4.
Brozovich
,
F. V.
,
Nicholson
,
C. J.
,
Degen
,
C. V.
,
Gao
,
Y. Z.
,
Aggarwal
,
M.
, and
Morgan
,
K. G.
,
2016
, “
Mechanisms of Vascular Smooth Muscle Contraction and the Basis for Pharmacologic Treatment of Smooth Muscle Disorders
,”
Pharmacol. Rev.
,
68
(
2
), pp.
476
532
.10.1124/pr.115.010652
5.
Peyton
,
S. R.
, and
Putnam
,
A. J.
,
2005
, “
Extracellular Matrix Rigidity Governs Smooth Muscle Cell Motility in a Biphasic Fashion
,”
J. Cell. Physiol.
,
204
(
1
), pp.
198
209
.10.1002/jcp.20274
6.
Lee
,
R. T.
,
Yamamoto
,
C.
,
Feng
,
Y.
,
Potter-Perigo
,
S.
,
Briggs
,
W. H.
,
Landschulz
,
K. T.
,
Turi
,
T. G.
,
Thompson
,
J. F.
,
Libby
,
P.
, and
Wight
,
T. N.
,
2001
, “
Mechanical Strain Induces Specific Changes in the Synthesis and Organization of Proteoglycans by Vascular Smooth Muscle Cells
,”
J. Biol. Chem.
,
276
(
17
), pp.
13847
13851
.10.1074/jbc.M010556200
7.
Isenberg
,
B. C.
,
DiMilla
,
P. A.
,
Walker
,
M.
,
Kim
,
S.
, and
Wong
,
J. Y.
,
2009
, “
Vascular Smooth Muscle Cell Durotaxis Depends on Substrate Stiffness Gradient Strength
,”
Biophys. J.
,
97
(
5
), pp.
1313
1322
.10.1016/j.bpj.2009.06.021
8.
McDaniel
,
D. P.
,
Shaw
,
G. A.
,
Elliott
,
J. T.
,
Bhadriraju
,
K.
,
Meuse
,
C.
,
Chung
,
K.-H.
, and
Plant
,
A. L.
,
2007
, “
The Stiffness of Collagen Fibrils Influences Vascular Smooth Muscle Cell Phenotype
,”
Biophys. J.
,
92
(
5
), pp.
1759
1769
.10.1529/biophysj.106.089003
9.
Steucke
,
K. E.
,
Tracy
,
P. V.
,
Hald
,
E. S.
,
Hall
,
J. L.
, and
Alford
,
P. W.
,
2015
, “
Vascular Smooth Muscle Cell Functional Contractility Depends on Extracellular Mechanical Properties
,”
J. Biomech.
,
48
(
12
), pp.
3044
3051
.10.1016/j.jbiomech.2015.07.029
10.
Iwasaki
,
H.
,
Eguchi
,
S.
,
Ueno
,
H.
,
Marumo
,
F.
, and
Hirata
,
Y.
,
2000
, “
Mechanical Stretch Stimulates Growth of Vascular Smooth Muscle Cells Via Epidermal Growth Factor Receptor
,”
Am. J. Physiol. Heart. Circ. Physiol.
,
278
(
2
), pp.
H521
529
.10.1152/ajpheart.2000.278.2.H521
11.
Haga
,
J. H.
,
Li
,
Y. J.
, and
Chien
,
S.
,
2007
, “
Molecular Basis of the Effects of Mechanical Stretch on Vascular Smooth Muscle Cells
,”
J. Biomech.
,
40
(
5
), pp.
947
960
.10.1016/j.jbiomech.2006.04.011
12.
Li
,
C.
,
Wernig
,
F.
,
Leitges
,
M.
,
Hu
,
Y.
, and
Xu
,
Q.
,
2003
, “
Mechanical Stress‐Activated PKCδ Regulates Smooth Muscle Cell Migration
,”
Faseb J.
,
17
(
14
), pp.
1
21
.10.1096/fj.03-0150fje
13.
Standley
,
P. R.
,
Camaratta
,
A.
,
Nolan
,
B. P.
,
Purgason
,
C. T.
, and
Stanley
,
M. A.
,
2002
, “
Cyclic Stretch Induces Vascular Smooth Muscle Cell Alignment Via NO Signaling
,”
Am. J. Physiol. Circ. Physiol.
,
283
(
5
), pp.
H1907
H1914
.10.1152/ajpheart.01043.2001
14.
Chen
,
Q.
,
Li
,
W.
,
Quan
,
Z.
, and
Sumpio
,
B. E.
,
2003
, “
Modulation of Vascular Smooth Muscle Cell Alignment by Cyclic Strain is Dependent on Reactive Oxygen Species and P38 Mitogen-Activated Protein Kinase
,”
J. Vasc. Surg.
,
37
(
3
), pp.
660
668
.10.1067/mva.2003.95
15.
Kollmannsberger
,
P.
,
Mierke
,
C. T.
, and
Fabry
,
B.
,
2011
, “
Nonlinear Viscoelasticity of Adherent Cells is Controlled by Cytoskeletal Tension
,”
Soft Matter
,
7
(
7
), pp.
3127
3132
.10.1039/C0SM00833H
16.
Hecht
,
F. M.
,
Rheinlaender
,
J.
,
Schierbaum
,
N.
,
Goldmann
,
W. H.
,
Fabry
,
B.
, and
Schäffer
,
T. E.
,
2015
, “
Imaging Viscoelastic Properties of Live Cells by AFM: Power-Law Rheology on the Nanoscale
,”
Soft Matter
,
11
(
23
), pp.
4584
4591
.10.1039/C4SM02718C
17.
Alcaraz
,
J.
,
Buscemi
,
L.
,
Grabulosa
,
M.
,
Trepat
,
X.
,
Fabry
,
B.
,
Farré
,
R.
, and
Navajas
,
D.
,
2003
, “
Microrheology of Human Lung Epithelial Cells Measured by Atomic Force Microscopy
,”
Biophys. J.
,
84
(
3
), pp.
2071
2079
.10.1016/S0006-3495(03)75014-0
18.
Deng
,
L.
,
Trepat
,
X.
,
Butler
,
J. P.
,
Millet
,
E.
,
Morgan
,
K. G.
,
Weitz
,
D. A.
, and
Fredberg
,
J. J.
,
2006
, “
Fast and Slow Dynamics of the Cytoskeleton
,”
Nat. Mater.
,
5
(
8
), pp.
636
640
.10.1038/nmat1685
19.
Sato
,
M.
,
Ohshima
,
N.
, and
Nerem
,
R. M.
,
1996
, “
Viscoelastic Properties of Cultured Porcine Aortic Endothelial Cells Exposed to Shear Stress
,”
J. Biomech.
,
29
(
4
), pp.
461
467
.10.1016/0021-9290(95)00069-0
20.
Tan
,
S. C. W.
,
Pan
,
W. X.
,
Ma
,
G.
,
Cai
,
N.
,
Leong
,
K. W.
, and
Liao
,
K.
,
2008
, “
Viscoelastic Behaviour of Human Mesenchymal Stem Cells
,”
BMC Cell Biol.
,
9
(
1
), p.
40
.10.1186/1471-2121-9-40
21.
Lu
,
Y.-B.
,
Franze
,
K.
,
Seifert
,
G.
,
Steinhauser
,
C.
,
Kirchhoff
,
F.
,
Wolburg
,
H.
,
Guck
,
J.
,
Janmey
,
P.
,
Wei
,
E.-Q.
,
Kas
,
J.
, and
Reichenbach
,
A.
,
2006
, “
Viscoelastic Properties of Individual Glial Cells and Neurons in the CNS
,”
Proc. Natl. Acad. Sci.
,
103
(
47
), pp.
17759
17764
.10.1073/pnas.0606150103
22.
Trepat
,
X.
,
Grabulosa
,
M.
,
Puig
,
F.
,
Maksym
,
G. N.
,
Navajas
,
D.
, and
Farré
,
R.
,
2004
, “
Viscoelasticity of Human Alveolar Epithelial Cells Subjected to Stretch
,”
Am. J. Physiol. Cell. Mol. Physiol.
,
287
(
5
), pp.
L1025
L1034
.10.1152/ajplung.00077.2004
23.
Bonakdar
,
N.
,
Gerum
,
R.
,
Kuhn
,
M.
,
Spörrer
,
M.
,
Lippert
,
A.
,
Schneider
,
W.
,
Aifantis
,
K. E.
, and
Fabry
,
B.
,
2016
, “
Mechanical Plasticity of Cells
,”
Nat. Mater.
,
15
(
10
), pp.
1090
1094
.10.1038/nmat4689
24.
Bu
,
Y.
,
Li
,
L.
,
Yang
,
C.
,
Li
,
R.
, and
Wang
,
J.
,
2019
, “
Measuring Viscoelastic Properties of Living Cells
,”
Acta Mech. Solida Sin.
,
32
(
5
), pp.
599
610
.10.1007/s10338-019-00113-7
25.
Collinsworth
,
A. M.
,
Zhang
,
S.
,
Kraus
,
W. E.
, and
Truskey
,
G. A.
,
2002
, “
Apparent Elastic Modulus and Hysteresis of Skeletal Muscle Cells Throughout Differentiation
,”
Am. J. Physiol. Cell Physiol.
,
283
(
4
), pp.
C1219
C1227
.10.1152/ajpcell.00502.2001
26.
Puig-de-Morales-Marinkovic
,
M.
,
Turner
,
K. T.
,
Butler
,
J. P.
,
Fredberg
,
J. J.
, and
Suresh
,
S.
,
2007
, “
Viscoelasticity of the Human Red Blood Cell
,”
Am. J. Physiol. Cell Physiol.
,
293
(
2
), pp.
597
605
.10.1152/ajpcell.00562.2006
27.
Bausch
,
A. R.
,
Möller
,
W.
, and
Sackmann
,
E.
,
1999
, “
Measurement of Local Viscoelasticity and Forces in Living Cells by Magnetic Tweezers
,”
Biophys. J.
,
76
(
1
), pp.
573
579
.10.1016/S0006-3495(99)77225-5
28.
Bausch
,
A. R.
,
Ziemann
,
F.
,
Boulbitch
,
A. A.
,
Jacobson
,
K.
, and
Sackmann
,
E.
,
1998
, “
Local Measurements of Viscoelastic Parameters of Adherent Cell Surfaces by Magnetic Bead Microrheometry
,”
Biophys. J.
,
75
(
4
), pp.
2038
2049
.10.1016/S0006-3495(98)77646-5
29.
Moreno-Flores
,
S.
,
Benitez
,
R.
,
Vivanco
,
M. dM.
, and
Toca-Herrera
,
J. L.
,
2010
, “
Stress Relaxation and Creep on Living Cells With the Atomic Force Microscope: A Means to Calculate Elastic Moduli and Viscosities of Cell Components
,”
Nanotechnol.
,
21
(
44
), p.
445101
.10.1088/0957-4484/21/44/445101
30.
Moreno-Flores
,
S.
,
Benitez
,
R.
,
Vivanco
,
M. dM.
, and
Toca-Herrera
,
J. L.
,
2010
, “
Stress Relaxation Microscopy: Imaging Local Stress in Cells
,”
J. Biomech.
,
43
(
2
), pp.
349
354
.10.1016/j.jbiomech.2009.07.037
31.
Okajima
,
T.
,
Tanaka
,
M.
,
Tsukiyama
,
S.
,
Kadowaki
,
T.
,
Yamamoto
,
S.
,
Shimomura
,
M.
, and
Tokumoto
,
H.
,
2007
, “
Stress Relaxation of HepG2 Cells Measured by Atomic Force Microscopy
,”
Nanotechnology
,
18
(
8
), p.
084010
.10.1088/0957-4484/18/8/084010
32.
Laurent
,
V. ’R. M.
,
HéNon
,
S.
,
Planus
,
E.
,
Fodil
,
R.
,
Balland
,
M.
,
Isabey
,
D.
, and
Gallet
,
F¸O.
,
2002
, “
Assessment of Mechanical Properties of Adherent Living Cells by Bead Micromanipulation: Comparison of Magnetic Twisting Cytometry vs Optical Tweezers
,”
ASME J. Biomech. Eng.
,
124
(
4
), pp.
408
421
.10.1115/1.1485285
33.
Maksym
,
G. N.
,
Fabry
,
B.
,
Butler
,
J. P.
,
Navajas
,
D.
,
Tschumperlin
,
D. J.
,
Laporte
,
J. D.
, and
Fredberg
,
J. J.
,
2000
, “
Mechanical Properties of Cultured Human Airway Smooth Muscle Cells From 0.05 to 0.4 Hz
,”
J. Appl. Physiol.
,
89
(
4
), pp.
1619
1632
.10.1152/jappl.2000.89.4.1619
34.
Trepat
,
X.
,
Deng
,
L.
,
An
,
S. S.
,
Navajas
,
D.
,
Tschumperlin
,
D. J.
,
Gerthoffer
,
W. T.
,
Butler
,
J. P.
, and
Fredberg
,
J. J.
,
2007
, “
Universal Physical Responses to Stretch in the Living Cell
,”
Nature
,
447
(
7144
), pp.
592
595
.10.1038/nature05824
35.
Nawaz
,
S.
,
Sánchez
,
P.
,
Bodensiek
,
K.
,
Li
,
S.
,
Simons
,
M.
, and
Schaap
,
I. A. T.
,
2012
, “
Cell Visco-Elasticity Measured With AFM and Optical Trapping at Sub-Micrometer Deformations
,”
PLoS One
,
7
(
9
), p.
e45297
.10.1371/journal.pone.0045297
36.
Radmacher
,
M.
,
Tillamnn
,
R.
,
Fritz
,
M.
, and
Gaub
,
H.
,
1992
, “
From Molecules to Cells: Imaging Soft Samples With the Atomic Force Microscope
,”
Science
,
257
(
5078
), pp.
1900
1905
.10.1126/science.1411505
37.
Putman
,
C. A.
,
van der Werf
,
K. O.
,
de Grooth
,
B. G.
,
van Hulst
,
N. F.
, and
Greve
,
J.
,
1994
, “
Viscoelasticity of Living Cells Allows High Resolution Imaging by Tapping Mode Atomic Force Microscopy
,”
Biophys. J.
,
67
(
4
), pp.
1749
1753
.10.1016/S0006-3495(94)80649-6
38.
Ushiwata
,
I.
, and
Ushiki
,
T.
,
1990
, “
Cytoarchitecture of the Smooth Muscles and Pericytes of Rat Cerebral Blood Vessels
,”
J. Neurosurg.
,
73
(
1
), pp.
82
90
.10.3171/jns.1990.73.1.0082
39.
Win
,
Z.
,
Buksa
,
J. M.
,
Steucke
,
K. E.
,
Gant Luxton
,
G. W.
,
Barocas
,
V. H.
, and
Alford
,
P. W.
,
2017
, “
Cellular Microbiaxial Stretching to Measure a Single-Cell Strain Energy Density Function
,”
J. Biomech. Eng.
,
139
(
7
), pp.
1
10
.10.1115/1.4036440
40.
Rothermel
,
T. M.
,
Win
,
Z.
, and
Alford
,
P. W.
,
2020
, “
Large-Deformation Strain Energy Density Function for Vascular Smooth Muscle Cells
,”
J. Biomech.
,
111
, p.
110005
.10.1016/j.jbiomech.2020.110005
41.
Win
,
Z.
,
Buksa
,
J. M.
, and
Alford
,
P. W.
,
2018
, “
Architecture-Dependent Anisotropic Hysteresis in Smooth Muscle Cells
,”
Biophys. J.
,
115
(
10
), pp.
2044
2054
.10.1016/j.bpj.2018.09.027
42.
Tseng
,
Q.
,
Duchemin-Pelletier
,
E.
,
Deshiere
,
A.
,
Balland
,
M.
,
Guillou
,
H.
,
Filhol
,
O.
, and
Thery
,
M.
,
2012
, “
Spatial Organization of the Extracellular Matrix Regulates Cell-Cell Junction Positioning
,”
Proc. Natl. Acad. Sci.
,
109
(
5
), pp.
1506
1511
.10.1073/pnas.1106377109
43.
Steucke
,
K. E.
,
Win
,
Z.
,
Stemler
,
T. R.
,
Walsh
,
E. E.
,
Hall
,
J. L.
, and
Alford
,
P. W.
,
2017
, “
Empirically Determined Vascular Smooth Muscle Cell Mechano-Adaptation Law
,”
J. Biomech. Eng.
,
139
(
7
), pp.
1
9
.10.1115/1.4036454
44.
Hill
,
A. V.
,
1938
, “
The Heat of Shortening and the Dynamic Constants of Muscle
,”
Proc. R. Soc. Lond. Ser. B - Biol. Sci.
,
126
(
843
), pp.
136
195
.10.1098/rspb.1938.0050
45.
Armentano
,
R. L.
,
Barra
,
J. G.
,
Levenson
,
J.
,
Simon
,
A.
, and
Pichel
,
R. H.
,
1995
, “
Arterial Wall Mechanics in Conscious Dogs
,”
Circ. Res.
,
76
(
3
), pp.
468
478
.10.1161/01.RES.76.3.468
46.
Goto
,
M.
, and
Kimoto
,
Y.
,
1966
, “
Hysteresis and Stress-Relaxation of the Blood Vessels Studied by a Universal Tensile Testing Instrument
,”
Jpn. J. Physiol.
,
16
(
2
), pp.
169
184
.10.2170/jjphysiol.16.169
47.
Holzapfel
,
G. A.
,
Sommer
,
G.
,
Gasser
,
C. T.
, and
Regitnig
,
P.
,
2005
, “
Determination of Layer-Specific Mechanical Properties of Human Coronary Arteries With Nonatherosclerotic Intimal Thickening and Related Constitutive Modeling
,”
Am. J. Physiol. Circ. Physiol.
,
289
(
5
), pp.
H2048
H2058
.10.1152/ajpheart.00934.2004
48.
Cox
,
R. H.
,
1978
, “
Passive Mechanics and Connective Composition of Canine Arteries
,”
Am. J. Physiol. Circ. Physiol.
,
234
(
5
), pp.
H533
H541
.10.1152/ajpheart.1978.234.5.H533
49.
Dobrin
,
P.
, and
Rovick
,
A.
,
1969
, “
Influence of Vascular Smooth Muscle on Contractile Mechanics and Elasticity of Arteries
,”
Am. J. Physiol. Content
,
217
(
6
), pp.
1644
1651
.10.1152/ajplegacy.1969.217.6.1644
50.
Sato
,
M.
, and
Ohshima
,
N.
,
1985
, “
Nonlinear Viscoelastic Behaviour of Canine Arterial Walls
,”
Med. Biol. Eng. Comput.
,
23
(
6
), pp.
565
571
.10.1007/BF02455311
51.
Zatzman
,
M.
,
Stacy
,
R. W.
,
Randall
,
J.
, and
Eberstein
,
A.
,
1954
, “
Time Course of Stress Relaxation in Isolated Arterial Segments
,”
Am. J. Physiol. Content
,
177
(
2
), pp.
299
302
.10.1152/ajplegacy.1954.177.2.299
52.
Craiem
,
D.
,
Rojo
,
F. J.
,
Atienza
,
J. M.
,
Armentano
,
R. L.
, and
Guinea
,
G. V.
,
2008
, “
Fractional-Order Viscoelasticity Applied to Describe Uniaxial Stress Relaxation of Human Arteries
,”
Phys. Med. Biol.
,
53
(
17
), pp.
4543
4554
.10.1088/0031-9155/53/17/006
53.
Young
,
J. T.
,
Vaishnav
,
R. N.
, and
Patel
,
D. J.
,
1977
, “
Nonlinear Anisotropic Viscoelastic Properties of Canine Arterial Segments
,”
J. Biomech.
,
10
(
9
), pp.
549
559
.10.1016/0021-9290(77)90035-5
54.
Veress
,
A. I.
,
Vince
,
D. G.
,
Anderson
,
P. M.
,
Cornhill
,
J. F.
,
Herderick
,
E. E.
,
Klingensmith
,
J. D.
,
Kuban
,
B. D.
,
Greenberg
,
N. L.
, and
Thomas
,
J. D.
,
2000
, “
Vascular Mechanics of the Coronary Artery
,”
Z. Kardiol.
,
89 Suppl 2
(
14
), pp.
92
100
.10.1007/s003920070106
55.
Yu
,
Q.
,
Zhou
,
J.
, and
Fung
,
Y. C.
,
1993
, “
Neutral Axis Location in Bending and Young's Modulus of Different Layers of Arterial Wall
,”
Am. J. Physiol. Circ. Physiol.
,
265
(
1
), pp.
H52
H60
.10.1152/ajpheart.1993.265.1.H52
56.
Liu
,
S. Q.
, and
Fung
,
Y. C.
,
1989
, “
Relationship Between Hypertension, Hypertrophy, and Opening Angle of Zero-Stress State of Arteries Following Aortic Constriction
,”
ASME J. Biomech. Eng.
,
111
(
4
), pp.
325
335
.10.1115/1.3168386
57.
Li
,
D.
,
Xu
,
D.
,
Li
,
P.
,
Wei
,
J.
,
Yang
,
K.
, and
Zhao
,
C.
,
2013
, “
Viscoelastic Evaluation of Fetal Umbilical Vein for Reconstruction of Middle Cerebral Artery
,”
Neural Regen. Res.
,
8
(
32
), pp.
3055
62
.
58.
Ladjal
,
H.
,
Hanus
,
J.
,
Pillarisetti
,
A.
,
Keefer
,
C.
,
Ferreira
,
A.
, and
Desai
,
J. P.
,
2009
, “
Atomic Force Microscopy-Based Single-Cell Indentation: Experimentation and Finite Element Simulation
,”
2009 IEEE/RSJ International Conference on Intelligent Robots and Systems
, IEEE, St. Louis, MO, Oct. 11–15, pp.
1326
1332
.10.1109/iros.2009.5354351
59.
Bernick
,
K. B.
,
Prevost
,
T. P.
,
Suresh
,
S.
, and
Socrate
,
S.
,
2011
, “
Biomechanics of Single Cortical Neurons
,”
Acta Biomater.
,
7
(
3
), pp.
1210
1219
.10.1016/j.actbio.2010.10.018
60.
Koay
,
E. J.
,
Shieh
,
A. C.
, and
Athanasiou
,
K. A.
,
2003
, “
Creep Indentation of Single Cells
,”
ASME J. Biomech. Eng.
,
125
(
3
), pp.
334
341
.10.1115/1.1572517
61.
Lenormand
,
G.
,
Millet
,
E.
,
Fabry
,
B.
,
Butler
,
J. P.
, and
Fredberg
,
J. J.
,
2004
, “
Linearity and Time-Scale Invariance of the Creep Function in Living Cells
,”
J. R. Soc. Interface
,
1
(
1
), pp.
91
97
.10.1098/rsif.2004.0010
62.
Desprat
,
N.
,
Richert
,
A.
,
Simeon
,
J.
, and
Asnacios
,
A.
,
2005
, “
Creep Function of a Single Living Cell
,”
Biophys. J.
,
88
(
3
), pp.
2224
2233
.10.1529/biophysj.104.050278
63.
Darling
,
E. M.
,
Zauscher
,
S.
, and
Guilak
,
F.
,
2006
, “
Viscoelastic Properties of Zonal Articular Chondrocytes Measured by Atomic Force Microscopy
,”
Osteoarthr. Cartil.
,
14
(
6
), pp.
571
579
.10.1016/j.joca.2005.12.003
64.
Darling
,
E. M.
,
Zauscher
,
S.
,
Block
,
J. A.
, and
Guilak
,
F.
,
2007
, “
A Thin-Layer Model for Viscoelastic, Stress-Relaxation Testing of Cells Using Atomic Force Microscopy: Do Cell Properties Reflect Metastatic Potential?
,”
Biophys. J.
,
92
(
5
), pp.
1784
1791
.10.1529/biophysj.106.083097
65.
Hemmer
,
J. D.
,
Nagatomi
,
J.
,
Wood
,
S. T.
,
Vertegel
,
A. A.
,
Dean
,
D.
, and
LaBerge
,
M.
,
2009
, “
Role of Cytoskeletal Components in Stress-Relaxation Behavior of Adherent Vascular Smooth Muscle Cells
,”
J. Biomech. Eng.
,
131
(
4
), pp.
1
9
.10.1115/1.3049860
66.
Bu
,
Y.
,
Li
,
L.
, and
Wang
,
J. Z.
,
2019
, “
Power Law Creep and Relaxation With the Atomic Force Microscope: Determining Viscoelastic Property of Living Cells
,”
Sci. China Technol. Sci.
,
62
(
5
), pp.
781
786
.10.1007/s11431-018-9438-4
67.
Muñoz
,
J. J.
, and
Albo
,
S.
,
2013
, “
Physiology-Based Model of Cell Viscoelasticity
,”
Phys. Rev. E - Stat. Nonlinear Soft Matter Phys.
,
88
(
1
), pp.
1
8
.10.1103/PhysRevE.88.012708
68.
Shenoy
,
V. B.
,
Wang
,
H.
, and
Wang
,
X.
,
2016
, “
A Chemo-Mechanical Free-Energy-Based Approach to Model Durotaxis and Extracellular Stiffness-Dependent Contraction and Polarization of Cells
,”
Interface Focus
,
6
(
1
), p.
20150067
.10.1098/rsfs.2015.0067
69.
Moreo
,
P.
,
García-Aznar
,
J. M.
, and
Doblaré
,
M.
,
2008
, “
Modeling Mechanosensing and Its Effect on the Migration and Proliferation of Adherent Cells
,”
Acta Biomater.
,
4
(
3
), pp.
613
621
.10.1016/j.actbio.2007.10.014
70.
Rosalem
,
G. S.
,
Las Casas
,
E. B.
,
Lima
,
T. P.
, and
González-Torres
,
L. A.
,
2020
, “
A Mechanobiological Model to Study Upstream Cell Migration Guided by Tensotaxis
,”
Biomech. Model. Mechanobiol.
,
19
(
5
), pp.
1537
1549
.10.1007/s10237-020-01289-5
71.
Kim
,
M.-C.
,
Neal
,
D. M.
,
Kamm
,
R. D.
, and
Asada
,
H. H.
,
2013
, “
Dynamic Modeling of Cell Migration and Spreading Behaviors on Fibronectin Coated Planar Substrates and Micropatterned Geometries
,”
PLoS Comput. Biol.
,
9
(
2
), p.
e1002926
.10.1371/journal.pcbi.1002926
72.
Vernerey
,
F. J.
, and
Farsad
,
M.
,
2014
, “
A Mathematical Model of the Coupled Mechanisms of Cell Adhesion, Contraction and Spreading
,”
J. Math. Biol.
,
68
(
4
), pp.
989
1022
.10.1007/s00285-013-0656-8
73.
Wei
,
Z.
,
Deshpande
,
V. S.
,
McMeeking
,
R. M.
, and
Evans
,
A. G.
,
2008
, “
Analysis and Interpretation of Stress Fiber Organization in Cells Subject to Cyclic Stretch
,”
ASME J. Biomech. Eng.
,
130
(
3
), p. 031009.10.1115/1.2907745
74.
Carver
,
W.
,
Nagpal
,
M. L.
,
Nachtigal
,
M.
,
Borg
,
T. K.
, and
Terracio
,
L.
,
1991
, “
Collagen Expression in Mechanically Stimulated Cardiac Fibroblasts
,”
Circ. Res.
,
69
(
1
), pp.
116
122
.10.1161/01.RES.69.1.116
75.
Olsen
,
T. R.
,
Casco
,
M.
,
Herbst
,
A.
,
Evans
,
G.
,
Rothermel
,
T.
,
Pruett
,
L.
,
Reid
,
J.
,
Barry
,
K.
,
Jaeggli
,
M. P.
,
Simionescu
,
D. T.
,
Visconti
,
R. P.
, and
Alexis
,
F.
,
2016
, “
Longitudinal Stretching for Maturation of Vascular Tissues Using Magnetic Forces
,”
Bioengineering
,
3
(
4
), pp.
1
14
.10.3390/bioengineering3040029
76.
Sumpio
,
B. E.
,
Banes
,
A. J.
,
Buckley
,
M.
, and
Johnson
,
G.
,
1988
, “
Alterations in Aortic Endothelial Cell Morphology and Cytoskeletal Protein Synthesis During Cyclic Tensional Deformation
,”
J. Vasc. Surg.
,
7
(
1
), pp.
130
138
.10.1016/0741-5214(88)90386-2
77.
Leung
,
D. Y. M.
,
Glagov
,
S.
, and
Mathews
,
M. B.
,
1977
, “
A New In Vitro System for Studying Cell Response to Mechanical Stimulation
,”
Exp. Cell Res.
,
109
(
2
), pp.
285
298
.10.1016/0014-4827(77)90008-8
78.
Yan
,
J.
,
Wang
,
W.-B.
,
Fan
,
Y.-J.
,
Bao
,
H.
,
Li
,
N.
,
Yao
,
Q.-P.
,
Huo
,
Y.-L.
,
Jiang
,
Z.-L.
,
Qi
,
Y.-X.
, and
Han
,
Y.
,
2020
, “
Cyclic Stretch Induces Vascular Smooth Muscle Cells to Secrete Connective Tissue Growth Factor and Promote Endothelial Progenitor Cell Differentiation and Angiogenesis
,”
Front. Cell Dev. Biol.
,
8
, pp.
1
15
.10.3389/fcell.2020.606989
79.
Cheng
,
G. C.
,
Briggs
,
W. H.
,
Gerson
,
D. S.
,
Libby
,
P.
,
Grodzinsky
,
A. J.
,
Gray
,
M. L.
, and
Lee
,
R. T.
,
1997
, “
Mechanical Strain Tightly Controls Fibroblast Growth Factor-2 Release From Cultured Human Vascular Smooth Muscle Cells
,”
Circ. Res.
,
80
(
1
), pp.
28
36
.10.1161/01.RES.80.1.28
80.
Wilson
,
E.
,
Mai
,
Q.
,
Sudhir
,
K.
,
Weiss
,
R. H.
, and
Ives
,
H. E.
,
1993
, “
Mechanical Strain Induces Growth of Vascular Smooth Muscle Cells Via Autocrine Action of PDGF
,”
J. Cell Biol.
,
123
(
3
), pp.
741
747
.10.1083/jcb.123.3.741
81.
Birukov
,
K. G.
,
Shirinsky
,
V. P.
,
Stepanova
,
O. V.
,
Tkachuk
,
V. A.
,
Hahn
,
A. W. A.
,
Resink
,
T. J.
, and
Smirnov
,
V. N.
,
1995
, “
Stretch Affects Phenotype and Proliferation of Vascular Smooth Muscle Cells
,”
Mol. Cell. Biochem.
,
144
(
2
), pp.
131
139
.10.1007/BF00944392
82.
Ghazanfari
,
S.
,
Tafazzoli-Shadpour
,
M.
, and
Shokrgozar
,
M. A.
,
2009
, “
Effects of Cyclic Stretch on Proliferation of Mesenchymal Stem Cells and Their Differentiation to Smooth Muscle Cells
,”
Biochem. Biophys. Res. Commun.
,
388
(
3
), pp.
601
605
.10.1016/j.bbrc.2009.08.072
83.
Shimizu
,
N.
,
Yamamoto
,
K.
,
Obi
,
S.
,
Kumagaya
,
S.
,
Masumura
,
T.
,
Shimano
,
Y.
,
Naruse
,
K.
,
Yamashita
,
J. K.
,
Igarashi
,
T.
, and
Ando
,
J.
,
2008
, “
Cyclic Strain Induces Mouse Embryonic Stem Cell Differentiation Into Vascular Smooth Muscle Cells by Activating PDGF Receptor β
,”
J. Appl. Physiol.
,
104
(
3
), pp.
766
772
.10.1152/japplphysiol.00870.2007
84.
Wang
,
H.
,
Ip
,
W.
,
Boissy
,
R.
, and
Grood
,
E. S.
,
1995
, “
Cell Orientation Response to Cyclically Deformed Substrates: Experimental Validation of a Cell Model
,”
J. Biomech.
,
28
(
12
), pp.
1543
1552
.10.1016/0021-9290(95)00101-8
85.
Dartsch
,
P. C.
, and
Betz
,
E.
,
1989
, “
Response of Cultured Endothelial Cells to Mechanical Stimulation
,”
Basic Res. Cardiol.
,
84
(
3
), pp.
268
281
.10.1007/BF01907974
86.
Dartsch
,
P. C.
,
Hammerle
,
H.
, and
Betz
,
E.
,
1986
, “
Orientation of Cultured Arterial Smooth Muscle Cells Growing on Cyclically Stretched Substrates
,”
Acta Anat. (Basel).
,
125
(
2
), pp.
108
113
.10.1159/000146146
87.
Wang
,
J. H. C.
,
2000
, “
Substrate Deformation Determines Actin Cytoskeleton Reorganization: A Mathematical Modeling and Experimental Study
,”
J. Theor. Biol.
,
202
(
1
), pp.
33
41
.10.1006/jtbi.1999.1035
88.
Neidlinger-Wilke
,
C.
,
Grood
,
E. S.
,
Wang
,
J. H. C.
,
Brand
,
R. A.
, and
Claes
,
L.
,
2001
, “
Cell Alignment is Induced by Cyclic Changes in Cell Length: Studies of Cells Grown in Cyclically Stretched Substrates
,”
J. Orthop. Res.
,
19
(
2
), pp.
286
293
.10.1016/S0736-0266(00)00029-2
89.
Buck
,
R. C.
,
1980
, “
Reorientation Response of Cells to Repeated Stretch and Recoil of the Substratum
,”
Exp. Cell Res.
,
127
(
2
), pp.
470
474
.10.1016/0014-4827(80)90456-5
90.
Greiner
,
A. M.
,
Chen
,
H.
,
Spatz
,
J. P.
, and
Kemkemer
,
R.
,
2013
, “
Cyclic Tensile Strain Controls Cell Shape and Directs Actin Stress Fiber Formation and Focal Adhesion Alignment in Spreading Cells
,”
PLoS One
,
8
(
10
), p.
e77328
.10.1371/journal.pone.0077328
91.
Cui
,
Y.
,
Hameed
,
F. M.
,
Yang
,
B.
,
Lee
,
K.
,
Pan
,
C. Q.
,
Park
,
S.
, and
Sheetz
,
M.
,
2015
, “
Cyclic Stretching of Soft Substrates Induces Spreading and Growth
,”
Nat. Commun.
,
6
, pp.
1
8
.10.1038/ncomms7333
92.
Fu
,
X.
,
Liu
,
G.
,
Halim
,
A.
,
Ju
,
Y.
,
Luo
,
Q.
, and
Song
,
G.
,
2019
, “
Mesenchymal Stem Cell Migration and Tissue Repair
,”
Cells
,
8
(
8
), p.
784
.10.3390/cells8080784
93.
Nagayama
,
K.
,
Suzuki
,
Y.
, and
Fujiwara
,
D.
,
2019
, “
Directional Dependence of Cyclic Stretch-Induced Cell Migration in Wound Healing Process of Monolayer Cells
,”
Adv. Biomed. Eng.
,
8
, pp.
163
169
.10.14326/abe.8.163
94.
Zhang
,
B.
,
Luo
,
Q.
,
Chen
,
Z.
,
Sun
,
J.
,
Xu
,
B.
,
Ju
,
Y.
, and
Song
,
G.
,
2015
, “
Cyclic Mechanical Stretching Promotes Migration but Inhibits Invasion of Rat Bone Marrow Stromal Cells
,”
Stem Cell Res.
,
14
(
2
), pp.
155
164
.10.1016/j.scr.2015.01.001
95.
Na
,
S.
,
Trache
,
A.
,
Trzeciakowski
,
J.
,
Sun
,
Z.
,
Meininger
,
G. A.
, and
Humphrey
,
J. D.
,
2008
, “
Time-Dependent Changes in Smooth Muscle Cell Stiffness and Focal Adhesion Area in Response to Cyclic Equibiaxial Stretch
,”
Ann. Biomed. Eng.
,
36
(
3
), pp.
369
380
.10.1007/s10439-008-9438-7
96.
Deshpande
,
V. S.
,
Mrksich
,
M.
,
McMeeking
,
R. M.
, and
Evans
,
A. G.
,
2008
, “
A Bio-Mechanical Model for Coupling Cell Contractility With Focal Adhesion Formation
,”
J. Mech. Phys. Solids
,
56
(
4
), pp.
1484
1510
.10.1016/j.jmps.2007.08.006
97.
Humphrey
,
J. D.
, and
Rajagopal
,
K. R.
,
2002
, “
A Constrained Mixture Model for Growth and Remodeling of Soft Tissues
,”
Math. Model. Methods Appl. Sci.
,
12
(
3
), pp.
407
430
.10.1142/S0218202502001714
98.
Humphrey
,
J. D.
, and
Rajagopal
,
K. R.
,
2003
, “
A Constrained Mixture Model for Arterial Adaptations to a Sustained Step Change in Blood Flow
,”
Biomech. Model. Mechanobiol.
,
2
(
2
), pp.
109
126
.10.1007/s10237-003-0033-4
99.
Alford
,
P. W.
, and
Taber
,
L. A.
,
2008
, “
Computational Study of Growth and Remodelling in the Aortic Arch
,”
Comput. Methods Biomech. Biomed. Eng.
,
11
(
5
), pp.
525
538
.10.1080/10255840801930710
100.
Taber
,
L. A.
, and
Humphrey
,
J. D.
,
2001
, “
Stress-Modulated Growth, Residual Stress, and Vascular Heterogeneity
,”
ASME J. Biomech. Eng.
,
123
(
6
), pp.
528
535
.10.1115/1.1412451
101.
Taber
,
L. A.
,
1998
, “
A Model for Aortic Growth Based on Fluid Shear and Fiber Stresses
,”
ASME J. Biomech. Eng.
,
120
(
3
), pp.
348
354
.10.1115/1.2798001
102.
Taber
,
L. A.
, and
Eggers
,
D. W.
,
1996
, “
Theoretical Study of Stress-Modulated Growth in the Aorta
,”
J. Theor. Biol.
,
180
(
4
), pp.
343
357
.10.1006/jtbi.1996.0107
103.
Cook
,
B. L.
,
Chau
,
C. J.
, and
Alford
,
P. W.
,
2021
, “
Architecture-Dependent Mechano-Adaptation in Single Vascular Smooth Muscle Cells
,”
J. Biomech. Eng.
,
143
(
10
), pp.
1
10
.10.1115/1.4051117
104.
Dinardo
,
C. L.
,
Venturini
,
G.
,
Zhou
,
E. H.
,
Watanabe
,
I. S.
,
Campos
,
L. C. G.
,
Dariolli
,
R.
,
da Motta-Leal-Filho
,
J. M.
,
Carvalho
,
V. M.
,
Cardozo
,
K. H. M.
,
Krieger
,
J. E.
,
Alencar
,
A. M.
, and
Pereira
,
A. C.
,
2014
, “
Variation of Mechanical Properties and Quantitative Proteomics of VSMC Along the Arterial Tree
,”
Am. J. Physiol. Heart. Circ. Physiol.
,
306
(
4
), pp.
505
516
.10.1152/ajpheart.00655.2013
105.
Rensen
,
S. S. M.
,
Doevendans
,
P. A. F. M.
, and
Van Eys
,
G. J. J. M.
,
2007
, “
Regulation and Characteristics of Vascular Smooth Muscle Cell Phenotypic Diversity
,”
Netherlands Hear. J.
,
15
(
3
), pp.
100
108
.10.1007/BF03085963
106.
Miyazaki
,
H.
,
Hasegawa
,
Y.
, and
Hayashi
,
K.
,
2002
, “
Tensile Properties of Contractile and Synthetic Vascular Smooth Muscle Cells
,”
JSME Int. J. Ser. C Mech. Syst. Mach. Elem. Manuf.
,
45
(
4
), pp.
870
879
.10.1299/jsmec.45.870
107.
Han
,
M.
,
Wen
,
J. K.
,
Zheng
,
B.
,
Cheng
,
Y.
, and
Zhang
,
C.
,
2006
, “
Serum Deprivation Results in Redifferentiation of Human Umbilical Vascular Smooth Muscle Cells
,”
Am. J. Physiol. Cell Physiol.
,
291
(
1
), pp.
50
58
.10.1152/ajpcell.00524.2005
108.
Win
,
Z.
,
Vrla
,
G. D.
,
Steucke
,
K. E.
,
Sevcik
,
E. N.
,
Hald
,
E. S.
, and
Alford
,
P. W.
,
2014
, “
Smooth Muscle Architecture Within Cell-Dense Vascular Tissues Influences Functional Contractility
,”
Integr. Biol.
,
6
(
12
), pp.
1201
1210
.10.1039/C4IB00193A
109.
Alford
,
P. W.
,
Nesmith
,
A. P.
,
Seywerd
,
J. N.
,
Grosberg
,
A.
, and
Parker
,
K. K.
,
2011
, “
Vascular Smooth Muscle Contractility Depends on Cell Shape
,”
Integr. Biol.
,
3
(
11
), pp.
1063
1070
.10.1039/c1ib00061f
110.
Smith
,
B. A.
,
Tolloczko
,
B.
,
Martin
,
J. G.
, and
Grütter
,
P.
,
2005
, “
Probing the Viscoelastic Behavior of Cultured Airway Smooth Muscle Cells With Atomic Force Microscopy: Stiffening Induced by Contractile Agonist
,”
Biophys. J.
,
88
(
4
), pp.
2994
3007
.10.1529/biophysj.104.046649
111.
Fabry
,
B.
,
Maksym
,
G. N.
,
Shore
,
S. A.
,
Moore
,
P. E.
,
Panettieri
,
R. A.
,
Butler
,
J. P.
, and
Fredberg
,
J. J.
,
2001
, “
Selected Contribution: Time Course and Heterogeneity of Contractile Responses in Cultured Human Airway Smooth Muscle Cells
,”
J. Appl. Physiol.
,
91
(
2
), pp.
986
994
.10.1152/jappl.2001.91.2.986
112.
Liao
,
D.
,
Sevcencu
,
C.
,
Yoshida
,
K.
, and
Gregersen
,
H.
,
2006
, “
Viscoelastic Properties of Isolated Rat Colon Smooth Muscle Cells
,”
Cell Biol. Int.
,
30
(
10
), pp.
854
858
.10.1016/j.cellbi.2006.05.012
113.
Clark
,
G. L.
,
Pokutta-Paskaleva
,
A. P.
,
Lawrence
,
D. J.
,
Lindsey
,
S. H.
,
Desrosiers
,
L.
,
Knoepp
,
L. R.
,
Bayer
,
C. L.
,
Gleason
,
R. L.
, and
Miller
,
K. S.
,
2019
, “
Smooth Muscle Regional Contribution to Vaginal Wall Function
,”
Interface Focus
,
9
(
4
), p.
20190025
.10.1098/rsfs.2019.0025
114.
Ferreira
,
J. P. S.
,
Kuang
,
M.
,
Parente
,
M. P. L.
,
Natal Jorge
,
R. M.
,
Wang
,
R.
,
Eppell
,
S. J.
, and
Damaser
,
M.
,
2020
, “
Altered Mechanics of Vaginal Smooth Muscle Cells Due to the Lysyl Oxidase-Like1 Knockout
,”
Acta Biomater.
,
110
, pp.
175
187
.10.1016/j.actbio.2020.03.046
115.
Pathak
,
A.
,
Deshpande
,
V. S.
,
McMeeking
,
R. M.
, and
Evans
,
A. G.
,
2008
, “
The Simulation of Stress Fibre and Focal Adhesion Development in Cells on Patterned Substrates
,”
J. R. Soc. Interface
,
5
(
22
), pp.
507
524
.10.1098/rsif.2007.1182
116.
Chan
,
C. E.
, and
Odde
,
D. J.
,
2008
, “
Traction Dynamics of Filopodia on Compliant Substrates
,”
Science
,
322
(
5908
), pp.
1687
1691
.10.1126/science.1163595
117.
Alford
,
P. W.
,
Dabiri
,
B. E.
,
Goss
,
J. A.
,
Hemphill
,
M. A.
,
Brigham
,
M. D.
, and
Parker
,
K. K.
,
2011
, “
Blast-Induced Phenotypic Switching in Cerebral Vasospasm
,”
Proc. Natl. Acad. Sci.
,
108
(
31
), pp.
12705
12710
.10.1073/pnas.1105860108
You do not currently have access to this content.