Abstract

We present a novel method based on the quasi-linear viscoelastic (QLV) theory to describe the time-dependent behavior of soft materials. Unlike previous methods for deriving QLV parameters, we characterize the elastic and viscous behavior of materials separately by using two different sets of experiments. To model the nonlinear elastic behavior, we fit the elastic stress response with a one-term Ogden model. Then, we model the relaxation behavior with a Prony series to compare the stress relaxation of the material at different timescales. This new method allows us to characterize materials with narrow confidence intervals (high accuracy), independently from the loading conditions. We validate our model using samples made of phantom materials that mimic normal and cancerous prostate tissues in terms of Young's modulus. Our model is shown to distinguish materials with similar elastic (viscous) properties but different viscous (elastic) properties. Drawing a precise distinction between the phantoms, this method could be useful for prostate cancer (PCa) diagnosis; but significant clinical studies will be needed in the future.

References

1.
Canadian Cancer Statistics Advisory Committee
,
2019
, “
Canadian Cancer Statistics 2019
,” Canadian Cancer Statistics Advisory Committee,
Toronto, ON, Canada
.
2.
Verbeek
,
J. F. M.
, and
Roobol
,
M. J.
,
2018
, “
What is an Acceptable False Negative Rate in the Detection of Prostate Cancer?
,”
Transl. Androl. Urol.
,
7
(
1
), pp.
54
60
.10.21037/tau.2017.12.12
3.
Campisano
,
F.
,
Ozel
, S.
,
Ramakrishnan
, A.
,
Dwivedi
, A.
,
Gkotsis
, N.
,
Onal
, C. D.
, and
Valdastri
, P.
,
2017
, “
Towards a Soft Robotic Skin for Autonomous Tissue Palpation
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Singapore, May 29–June 3, pp.
6150
6155
.10.1109/ICRA.2017.7989729
4.
Naji
,
L.
,
Randhawa
,
H.
,
Sohani
,
Z.
,
Dennis
,
B.
,
Lautenbach
,
D.
,
Kavanagh
,
O.
,
Bawor
,
M.
,
Banfield
,
L.
, and
Profetto
,
J.
,
2018
, “
Digital Rectal Examination for Prostate Cancer Screening in Primary Care: A Systematic Review and Meta-Analysis
,”
Ann. Fam. Med.
,
16
(
2
), pp.
149
154
.10.1370/afm.2205
5.
Sigrist
,
R. M. S.
,
Liau
,
J.
,
Kaffas
,
A. E.
,
Chammas
,
M. C.
, and
Willmann
,
J. K.
,
2017
, “
Ultrasound Elastography: Review of Techniques and Clinical Applications
,”
Theranostics
,
7
(
5
), pp.
1303
1329
.10.7150/thno.18650
6.
Mariappan
,
Y. K.
,
Glaser
,
K. J.
, and
Ehman
,
R. L.
,
2010
, “
Magnetic Resonance Elastography: A Review
,”
Clin. Anat.
,
23
(
5
), pp.
497
511
.10.1002/ca.21006
7.
Zhang
,
M.
,
Nigwekar
,
P.
,
Castaneda
,
B.
,
Hoyt
,
K.
,
Joseph
,
J. V.
,
di Sant'Agnese
,
A.
,
Messing
,
E. M.
,
Strang
,
J. G.
,
Rubens
,
D. J.
, and
Parker
,
K. J.
,
2008
, “
Quantitative Characterization of Viscoelastic Properties of Human Prostate Correlated With Histology
,”
Ultrasound Med. Biol
,
34
(
7
), pp.
1033
1042
.10.1016/j.ultrasmedbio.2007.11.024
8.
Kelly
,
N. P.
,
Flood
,
H. D.
,
Hoey
,
D. A.
,
Kiely
,
P. A.
,
Giri
,
S. K.
,
Coffey
,
J. C.
, and
Walsh
,
M. T.
,
2019
, “
Direct Mechanical Characterization of Prostate Tissue—A Systematic Review
,”
Prostate
,
79
(
2
), pp.
115
125
.10.1002/pros.23718
9.
Özkaya
,
N.
,
Nordin
,
M.
,
Goldsheyder
,
D.
, and
Leger
,
D.
,
2012
,
Fundamentals of Biomechanics
, Vol.
86
,
Springer
,
New York
.
10.
Takács
,
Á.
,
Rudas
,
I. J.
, and
Haidegger
,
T.
,
2016
, “
Surface Deformation and Reaction Force Estimation of Liver Tissue Based on a Novel Nonlinear Mass–Spring–Damper Viscoelastic Model
,”
Med. Biol. Eng. Comput.
,
54
(
10
), pp.
1553
1562
.10.1007/s11517-015-1434-0
11.
Taylor
,
L. S.
,
Lerner
,
A. L.
,
Rubens
,
D. J.
, and
Parker
,
K. J.
,
2002
, “
A Kelvin-Voight Fractional Derivative Model for Viscoelastic Characterization of Liver Tissue
,”
ASME
Paper No. IMECE2002-32605.10.1115/IMECE2002-32605
12.
Fung
,
Y.-C.
,
1981
,
Biomechanics
,
Springer
,
New York
.
13.
De Pascalis
,
R.
,
Abrahams
,
I. D.
, and
Parnell
,
W. J.
,
2014
, “
On Nonlinear Viscoelastic Deformations: A Reappraisal of Fung's Quasi-Linear Viscoelastic Model
,”
Proc. R. Soc. A
,
470
(
2166
), Article No. 20140107.10.1098/rspa.2014.0058
14.
Babaei
,
B.
,
Velasquez-Mao
,
A. J.
,
Pryse
,
K. M.
,
McConnaughey
,
W. B.
,
Elson
,
E. L.
, and
Genin
,
G. M.
,
2018
, “
Energy Dissipation in Quasi-Linear Viscoelastic Tissues, Cells, and Extracellular Matrix
,”
J. Mech. Behav. Biomed. Mater.
,
84
, pp.
198
207
.10.1016/j.jmbbm.2018.05.011
15.
Babaei
,
B.
,
Abramowitch
,
S. D.
,
Elson
,
E. L.
,
Thomopoulos
,
S.
, and
Genin
,
G. M.
,
2015
, “
A Discrete Spectral Analysis for Determining Quasi-Linear Viscoelastic Properties of Biological Materials
,”
J. R. Soc. Interface
,
12
(
113
), pp.
10
17
.10.1098/rsif.2015.0707
16.
Puso
,
M. A.
, and
Weiss
,
J. A.
,
1998
, “
Finite Element Implementation of Anisotropic Quasi-Linear Viscoelasticity Using a Discrete Spectrum Approximation
,”
ASME J. Biomech. Eng.
,
120
(
1
), pp.
62
70
.10.1115/1.2834308
17.
Calvo-Gallego
,
J. L.
,
Domínguez
,
J.
,
Gómez Cía
,
T.
,
Gómez Ciriza
,
G.
, and
Martínez-Reina
,
J.
,
2018
, “
Comparison of Different Constitutive Models to Characterize the Viscoelastic Properties of Human Abdominal Adipose Tissue. A Pilot Study
,”
J. Mech. Behav. Biomed. Mater.
,
80
, pp.
293
302
.10.1016/j.jmbbm.2018.02.013
18.
Yang
,
W.
,
Fung
,
T. C.
,
Chian
,
K. S.
, and
Chong
,
C. K.
,
2006
, “
Viscoelasticity of Esophageal Tissue and Application of a QLV Model
,”
ASME J. Biomech. Eng.
,
128
(
6
), pp.
909
916
.10.1115/1.2372473
19.
Xu
,
F.
,
Seffen
,
K.
, and
Lu
,
T.
,
2008
, “
A Quasi-Linear Viscoelastic Model for Skin Tissue
,”
Proceedings of the Third IASME/WSEAS International Conference on Continuum Mechanics
, Cambridge, UK, Feb. 23–25, pp.
14
21
.http://www.wseas.us/e-library/conferences/2008/uk/CM/cm-03.pdf
20.
Troyer
,
K. L.
,
Estep
,
D. J.
, and
Puttlitz
,
C. M.
,
2012
, “
Viscoelastic Effects During Loading Play an Integral Role in Soft Tissue Mechanics
,”
Acta Biomater
,
8
(
1
), pp.
234
243
.10.1016/j.actbio.2011.07.035
21.
Gimbel
,
J. A.
,
Sarver
,
J. J.
, and
Soslowsky
,
L. J.
,
2004
, “
The Effect of Overshooting the Target Strain on Estimating Viscoelastic Properties From Stress Relaxation Experiments
,”
ASME J. Biomech. Eng.
,
126
(
6
), pp.
844
848
.10.1115/1.1824132
22.
Voyiadjis
,
G. Z.
, and
Samadi-Dooki
,
A.
,
2018
, “
Hyperelastic Modeling of the Human Brain Tissue: Effects of No-Slip Boundary Condition and Compressibility on the Uniaxial Deformation
,”
J. Mech. Behav. Biomed. Mater.
,
83
, pp.
63
78
.10.1016/j.jmbbm.2018.04.011
23.
Babaei
,
B.
,
Velasquez-Mao
,
A. J.
,
Thomopoulos
,
S.
,
Elson
,
E. L.
,
Abramowitch
,
S. D.
, and
Genin
,
G. M.
,
2017
, “
Discrete Quasi-Linear Viscoelastic Damping Analysis of Connective Tissues, and the Biomechanics of Stretching
,”
J. Mech. Behav. Biomed. Mater.
,
69
, pp.
193
202
.10.1016/j.jmbbm.2016.12.013
24.
Troyer
,
K. L.
,
Shetye
,
S. S.
, and
Puttlitz
,
C. M.
,
2012
, “
Experimental Characterization and Finite Element Implementation of Soft Tissue Nonlinear Viscoelasticity
,”
ASME J. Biomech. Eng.
,
134
(
11
), p.
114501
.10.1115/1.4007630
25.
Commisso
,
M. S.
,
Calvo-Gallego
,
J. L.
,
Mayo
,
J.
,
Tanaka
,
E.
, and
Martínez-Reina
,
J.
,
2016
, “
Quasi-Linear Viscoelastic Model of the Articular Disc of the Temporomandibular Joint
,”
Exp. Mech.
,
56
(
7
), pp.
1169
1177
.10.1007/s11340-016-0161-2
26.
Abramowitch
,
S. D.
, and
Woo
,
S. L. Y.
,
2004
, “
An Improved Method to Analyze the Stress Relaxation of Ligaments Following a Finite Ramp Time Based on the Quasi-Linear Viscoelastic Theory
,”
ASME J. Biomech. Eng.
,
126
(
1
), pp.
92
97
.10.1115/1.1645528
27.
Benson
,
H. Y.
, and
Shanno
,
D. F.
,
2008
, “
Interior-Point Methods for Nonconvex Nonlinear Programming: Regularization and Warmstarts
,”
Comput. Optim. Appl.
,
40
(
2
), pp.
143
189
.10.1007/s10589-007-9089-x
28.
Mazurek
,
P.
,
Vudayagiri
,
S.
, and
Skov
,
A. L.
,
2019
, “
How to Tailor Flexible Silicone Elastomers With Mechanical Integrity: A Tutorial Review
,”
Chem. Soc. Rev.
,
48
(
6
), pp.
1448
1464
.10.1039/C8CS00963E
29.
Hoyt
,
K.
,
Castaneda
,
B.
,
Zhang
,
M.
,
Nigwekar
,
P.
,
di Sant'Agnese
,
P. A.
,
Joseph
,
J. V.
,
Strang
,
J.
,
Rubens
,
D. J.
, and
Parker
,
K. J.
,
2008
, “
Tissue Elasticity Properties as Biomarkers for Prostate Cancer
,”
Cancer Biomarkers
,
4
(
4–5
), pp.
213
225
.10.3233/CBM-2008-44-505
30.
Good
,
D. W.
,
Stewart
,
G. D.
,
Hammer
,
S.
,
Scanlan
,
P.
,
Shu
,
W.
,
Phipps
,
S.
,
Reuben
,
R.
, and
McNeill
,
A. S.
,
2014
, “
Elasticity as a Biomarker for Prostate Cancer: A Systematic Review
,”
BJU Int.
,
113
(
4
), pp.
523
534
.10.1111/bju.12236
31.
Yin
,
F. C. P.
,
Chew
,
P. H.
, and
Zeger
,
S. L.
,
1986
, “
An Approach to Quantification of Biaxial Tissue Stress-Strain Data
,”
J. Biomech.
,
19
(
1
), pp.
27
37
.10.1016/0021-9290(86)90106-5
32.
Wang
,
X.
,
Wang
,
J.
,
Liu
,
Y.
,
Zong
,
H.
,
Che
,
X.
,
Zheng
,
W.
,
Chen
,
F.
,
Zhu
,
Z.
,
Yang
,
D.
, and
Song
,
X.
,
2014
, “
Alterations in Mechanical Properties Are Associated With Prostate Cancer Progression
,”
Med. Oncol.
,
31
(
3
), Article No. 876.10.1007/s12032-014-0876-9
33.
Jalkanen
,
V.
,
Andersson
,
B. M.
,
Bergh
,
A.
,
Ljungberg
,
B.
, and
Lindahl
,
O. A.
,
2013
, “
Indentation Loading Response of a Resonance Sensor-Discriminating Prostate Cancer and Normal Tissue
,”
J. Med. Eng. Technol.
,
37
(
7
), pp.
416
423
.10.3109/03091902.2013.824510
34.
Sukiman
,
E. V. M.
,
Wong
,
Andriyana
,
D. A.
, and
Ang
,
B. C.
,
2019
, “
Evaluation of the Elastic Properties of Randomly-Oriented Electrospun Nanofibrous Polyurethane Thermoplastic Elastomer Membranes
,” 11th European Conference on Constitutive Models for Rubber (
ECCMR 2019
), Nantes, France, June 25–27, pp.
133
137
.10.1201/9780429324710-24
You do not currently have access to this content.