Abstract

Atrioventricular valve regurgitation is a significant cause of morbidity and mortality in patients with acquired and congenital cardiac valve disease. Image-derived computational modeling of atrioventricular valves has advanced substantially over the last decade and holds particular promise to inform valve repair in small and heterogeneous populations, which are less likely to be optimized through empiric clinical application. While an abundance of computational biomechanics studies has investigated mitral and tricuspid valve disease in adults, few studies have investigated its application to vulnerable pediatric and congenital heart populations. Further, to date, investigators have primarily relied upon a series of commercial applications that are neither designed for image-derived modeling of cardiac valves nor freely available to facilitate transparent and reproducible valve science. To address this deficiency, we aimed to build an open-source computational framework for the image-derived biomechanical analysis of atrioventricular valves. In the present work, we integrated an open-source valve modeling platform, SlicerHeart, and an open-source biomechanics finite element modeling software, FEBio, to facilitate image-derived atrioventricular valve model creation and finite element analysis. We present a detailed verification and sensitivity analysis to demonstrate the fidelity of this modeling in application to three-dimensional echocardiography-derived pediatric mitral and tricuspid valve models. Our analyses achieved an excellent agreement with those reported in the literature. As such, this evolving computational framework offers a promising initial foundation for future development and investigation of valve mechanics, in particular collaborative efforts targeting the development of improved repairs for children with congenital heart disease.

References

1.
Salgo
,
I. S.
,
Gorman
,
J. H.
,
Gorman
,
R. C.
,
Jackson
,
B. M.
,
Bowen
,
F. W.
,
Plappert
,
T.
,
St John Sutton
,
M. G.
, and
Edmunds
,
L. H.
,
2002
, “
Effect of Annular Shape on Leaflet Curvature in Reducing Mitral Leaflet Stress
,”
Circulation
,
106
(
6
), pp.
711
717
.10.1161/01.CIR.0000025426.39426.83
2.
Grewal
,
J.
,
Suri
,
R.
,
Mankad
,
S.
,
Tanaka
,
A.
,
Mahoney
,
D. W.
,
Schaff
,
H. V.
,
Miller
,
F. A.
, and
Enriquez-Sarano
,
M.
,
2010
, “
Mitral Annular Dynamics in Myxomatous Valve Disease
,”
Circulation
,
121
(
12
), pp.
1423
1431
.10.1161/CIRCULATIONAHA.109.901181
3.
Levack
,
M. M.
,
Jassar
,
A. S.
,
Shang
,
E. K.
,
Vergnat
,
M.
,
Woo
,
Y. J.
,
Acker
,
M. A.
,
Jackson
,
B. M.
,
Gorman
,
J. H.
, and
Gorman
,
R. C.
,
2012
, “
Three-Dimensional Echocardiographic Analysis of Mitral Annular Dynamics
,”
Circulation
,
126
(
11_suppl_1
), pp.
S183
S188
.10.1161/CIRCULATIONAHA.111.084483
4.
Lee
,
C. H.
,
Oomen
,
P. J.
,
Rabbah
,
J. P.
,
Yoganathan
,
A.
,
Gorman
,
R. C.
,
Gorman
,
J. H.
,
Amini
,
R.
, and
Sacks
,
M. S.
,
2013
, “
A High-Fidelity and Micro-Anatomically Accurate 3D Finite Element Model for Simulations of Functional Mitral Valve
,”
LNCS
,
7945
, pp.
416
424
.10.1007/978-3-642-38899-6_49
5.
Kong
,
F.
,
Pham
,
T.
,
Martin
,
C.
,
McKay
,
R.
,
Primiano
,
C.
,
Hashim
,
S.
,
Kodali
,
S.
, and
Sun
,
W.
,
2018
, “
Finite Element Analysis of Tricuspid Valve Deformation From Multi-Slice Computed Tomography Images
,”
Ann. Biomed. Eng.
,
46
(
8
), pp.
1112
1127
.10.1007/s10439-018-2024-8
6.
Villard
,
P. F.
,
Hammer
,
P. E.
,
Perrin
,
D. P.
,
del Nido
,
P. J.
, and
Howe
,
R. D.
,
2018
, “
Fast Image-Based Mitral Valve Simulation From Individualized Geometry
,”
Int. J. Medical Rob. Comput. Assisted Surg.
,
14
(
2
), p.
4
.10.1002/rcs.1880
7.
Biffi
,
B.
,
Gritti
,
M.
,
Grasso
,
A.
,
Milano
,
E. G.
,
Fontana
,
M.
,
Alkareef
,
H.
,
Davar
,
J.
,
et al.
,
2019
, “
A Workflow for Patient-Specific Fluid–Structure Interaction Analysis of the Mitral Valve: A Proof of Concept on a Mitral Regurgitation Case
,”
Medical Eng. Phys.
,
74
(
12
), pp.
153
161
.10.1016/j.medengphy.2019.09.020
8.
Khalighi
,
A. H.
,
Rego
,
B. V.
,
Drach
,
A.
,
Gorman
,
R. C.
,
Gorman
,
J. H.
, and
Sacks
,
M. S.
,
2019
, “
Development of a Functionally Equivalent Model of the Mitral Valve Chordae Tendineae Through Topology Optimization
,”
Ann. Biomed. Eng.
,
47
(
1
), pp.
60
74
.10.1007/s10439-018-02122-y
9.
Sacks
,
M. S.
,
Drach
,
A.
,
Lee
,
C. H.
,
Khalighi
,
A. H.
,
Rego
,
B. V.
,
Zhang
,
W.
,
Ayoub
,
S.
,
Yoganathan
,
A. P.
,
Gorman
,
R. C.
, and
Gorman
,
J. H.
,
2019
, “
On the Simulation of Mitral Valve Function in Health, Disease, and Treatment
,”
ASME J. Biomech. Eng.
,
141
(
7
), p.
070804
.10.1115/1.4043552
10.
Kong
,
F.
,
Caballero
,
A.
,
McKay
,
R.
, and
Sun
,
W.
,
2020
, “
Finite Element Analysis of Mitraclip Procedure on a Patient- Specific Model With Functional Mitral Regurgitation
,”
J. Biomech.
,
104
, p.
109730
.10.1016/j.jbiomech.2020.109730
11.
Lee
,
C. H.
,
Amini
,
R.
,
Gorman
,
R. C.
,
Gorman
,
J. H.
, and
Sacks
,
M. S.
,
2014
, “
An Inverse Modeling Approach for Stress Estimation in Mitral Valve Anterior Leaflet Valvuloplasty for In-Vivo Valvular Biomaterial Assessment
,”
J. Biomech.
,
47
(
9
), pp.
2055
2063
.10.1016/j.jbiomech.2013.10.058
12.
Khalighi
,
A. H.
,
Drach
,
A.
,
Bloodworth
,
C. H.
,
Pierce
,
E. L.
,
Yoganathan
,
A. P.
,
Gorman
,
R. C.
,
Gorman
,
J. H.
, and
Sacks
,
M. S.
,
2017
, “
Mitral Valve Chordae Tendineae: Topological and Geometrical Characterization
,”
Ann. Biomed. Eng.
,
45
(
2
), pp.
378
393
.10.1007/s10439-016-1775-3
13.
Kamensky
,
D.
,
Xu
,
F.
,
Lee
,
C. H.
,
Yan
,
J.
,
Bazilevs
,
Y.
, and
Hsu
,
M. C.
,
2018
, “
A Contact Formulation Based on a Volumetric Potential: Application to Isogeometric Simulations of Atrioventricular Valves
,”
Comput. Methods Appl. Mech. Eng.
,
330
(
3
), pp.
522
546
.10.1016/j.cma.2017.11.007
14.
Singh-Gryzbon
,
S.
,
Sadri
,
V.
,
Toma
,
M.
,
Pierce
,
E. L.
,
Wei
,
Z. A.
, and
Yoganathan
,
A. P.
,
2019
, “
Development of a Computational Method for Simulating Tricuspid Valve Dynamics
,”
Ann. Biomed. Eng.
,
47
(
6
), pp.
1422
1434
.10.1007/s10439-019-02243-y
15.
Drach
,
A.
,
Khalighi
,
A. H.
, and
Sacks
,
M. S.
,
2018
, “
A Comprehensive Pipeline for Multi-Resolution Modeling of the Mitral Valve: Validation, Computational Efficiency, and Predictive Capability
,”
Int. J. Numer. Methods Biomed. Eng.
,
34
(
2
), p.
e2921
.10.1002/cnm.2921
16.
Lee
,
C. H.
,
Rabbah
,
J. P.
,
Yoganathan
,
A. P.
,
Gorman
,
R. C.
,
Gorman
,
J. H.
, and
Sacks
,
M. S.
,
2015
, “
On the Effects of Leaflet Microstructure and Constitutive Model on the Closing Behavior of the Mitral Valve
,”
Biomech. Model. Mechanobiol.
,
14
(
6
), pp.
1281
1302
.10.1007/s10237-015-0674-0
17.
Lee
,
C. H.
,
Laurence
,
D. W.
,
Ross
,
C. J.
,
Kramer
,
K. E.
,
Babu
,
A. R.
,
Johnson
,
E. L.
, Hsu, M. C.,
et al.
,
2019
, Mechanics of the Tricuspid Valve—From Clinical Diagnosis/Treatment, In-Vivo and In-Vitro Investigations, to Patient-Specific Biomechanical Modeling,
Bioengineering
, 6(2), p.
47
.10.3390/bioengineering6020047
18.
Johnson
,
E. L.
,
Laurence
,
D. W.
,
Xu
,
F.
,
Crisp
,
C. E.
,
Mir
,
A.
,
Burkhart
,
H. M.
,
Lee
,
C. H.
, and
Hsu
,
M. C.
,
2021
, “
Parameterization, Geometric Modeling, and Isogeometric Analysis of Tricuspid Valves
,”
Comput. Methods Appl. Mech. Eng.
,
384
, p.
113960
.10.1016/j.cma.2021.113960
19.
Oomen
,
P. J. A.
,
Holland
,
M. A.
,
Bouten
,
C. V. C.
,
Kuhl
,
E.
, and
Loerakker
,
S.
,
2018
, “
Growth and Remodeling Play Opposing Roles During Postnatal Human Heart Valve Development
,”
Sci. Rep.
,
8
(
1
), p.
1235
.10.1038/s41598-018-19777-1
20.
Rausch
,
M. K.
,
2020
, “
Growth and Remodeling of Atrioventricular Heart Valves: A Potential Target for Pharmacological Treatment?
,”
Curr. Opin. Biomed. Eng.
,
15
, pp.
10
15
.10.1016/j.cobme.2019.12.008
21.
Kodigepalli
,
K. M.
,
Thatcher
,
K.
,
West
,
T.
,
Howsmon
,
D. P.
,
Schoen
,
F. J.
,
Sacks
,
M. S.
,
Breuer
,
C. K.
, and
Lincoln
,
J.
,
2020
, “
Biology and Biomechanics of the Heart Valve Extracellular Matrix
,”
J. Cardiovasc. Develop. Dis.
,
7
(
4
), p.
57
.10.3390/jcdd7040057
22.
Kruithof
,
B. P. T.
,
Paardekooper
,
L.
,
Hiemstra
,
Y. L.
,
Goumans
,
M.-J.
,
Palmen
,
M.
,
Delgado
,
V.
,
Klautz
,
R. J. M.
, and
Ajmone Marsan
,
N.
,
2019
, “
Stress-Induced Remodelling of the Mitral Valve: A Model for Leaflet Thickening and Superimposed Tissue Formation in Mitral Valve Disease
,”
Cardiovasc. Res.
,
116
(
5
), pp.
931
943
.10.1093/cvr/cvz204
23.
Markby
,
G. R.
,
Macrae
,
V. E.
,
Summers
,
K. M.
, and
Corcoran
,
B. M.
,
2020
, “
Disease Severity-Associated Gene Expression in Canine Myxomatous Mitral Valve Disease is Dominated by TGFβ Signaling
,”
Front. Genet.
,
11
, p.
372
.10.3389/fgene.2020.00372
24.
Maas
,
S. A.
,
Ellis
,
B. J.
,
Ateshian
,
G. A.
, and
Weiss
,
J. A.
,
2012
, “
Febio: Finite Elements for Biomechanics
,”
ASME J. Biomech. Eng.
,
134
(
1
), p. 011005.10.1115/1.4005694
25.
Maas
,
S. A.
,
Ateshian
,
G. A.
, and
Weiss
,
J. A.
,
2017
, “
Febio: History and Advances
,”
Annu. Rev. Biomed. Eng.
,
19
(
1
), pp.
279
299
.10.1146/annurev-bioeng-071516-044738
26.
Ateshian
,
G. A.
,
Shim
,
J. J.
,
Maas
,
S. A.
, and
Weiss
,
J. A.
,
2018
, “
Finite Element Framework for Computational Fluid Dynamics in Febio
,”
ASME J. Biomech. Eng.
,
140
(
2
), p. 021001.10.1115/1.4038716
27.
Scanlan
,
A. B.
,
Nguyen
,
A. V.
,
Ilina
,
A.
,
Lasso
,
A.
,
Cripe
,
L.
,
Jegatheeswaran
,
A.
,
Silvestro
,
E.
,
et al.
,
2018
, “
Comparison of 3D Echocardiogram-Derived 3D Printed Valve Models to Molded Models for Simulated Repair of Pediatric Atrioventricular Valves
,”
Pediatric Cardiol.
,
39
(
3
), pp.
538
547
.10.1007/s00246-017-1785-4
28.
Nguyen
,
A. V.
,
Lasso
,
A.
,
Nam
,
H. H.
,
Faerber
,
J.
,
Aly
,
A. H.
,
Pouch
,
A. M.
,
Scanlan
,
A. B.
,
et al.
,
2019
, “
Dynamic Three-Dimensional Geometry of the Tricuspid Valve Annulus in Hypoplastic Left Heart Syndrome With a Fontan Circulation
,”
J. Am. Soc. Echocardiogr.
,
32
(
5
), pp.
655
666
.10.1016/j.echo.2019.01.002
29.
Fedorov
,
A.
,
Beichel
,
R.
,
Kalpathy-Cramer
,
J.
,
Finet
,
J.
,
Fillion-Robin
,
J.-C.
,
Pujol
,
S.
,
Bauer
,
C.
,
et al.
,
2012
, “
3D Slicer as an Image Computing Platform for the Quantitative Imaging Network
,”
Magn. Reson. Imaging
,
30
(
9
), pp.
1323
1341
.10.1016/j.mri.2012.05.001
30.
Herz
,
C.
,
Cianciulli
,
A.
,
Ching
,
S.
,
Vigil
,
C.
,
Lasso
,
A.
,
Nam
,
H. H.
,
Drouin
,
S.
,
et al.
,
2021
, “
Open-Source Tool Kit for Interactive Planning of Transcatheter Mitral Valve Replacement Using Multimodality Imaging
,”
J. Am. Soc. Echocardiogr.
,
34
(
8
), pp.
917
920
.10.1016/j.echo.2021.03.014
31.
Sacks
,
M. S.
,
David Merryman
,
W.
, and
Schmidt
,
D. E.
,
2009
, “
On the Biomechanics of Heart Valve Function
,”
J. Biomech.
,
42
(
12
), pp.
1804
1824
.10.1016/j.jbiomech.2009.05.015
32.
Maxfield
,
M. W.
,
Cleary
,
M. A.
, and
Breuer
,
C. K.
,
2014
, “
Chapter 40 - Tissue-Engineering Heart Valves
,”
Principles of Tissue Engineering
,
R.
Lanza
,
R.
Langer
, and
J.
Vacanti
, eds., 4th ed.,
Academic Press
,
Boston
, MA, pp.
813
833
.
33.
Jett
,
S.
,
Laurence
,
D.
,
Kunkel
,
R.
,
Babu
,
A. R.
,
Kramer
,
K.
,
Baumwart
,
R.
,
Towner
,
R.
,
Wu
,
Y.
, and
Lee
,
C.-H.
,
2018
, “
An Investigation of the Anisotropic Mechanical Properties and Anatomical Structure of Porcine Atrioventricular Heart Valves
,”
J. Mech. Behav. Biomed. Mater.
,
87
, pp.
155
171
.10.1016/j.jmbbm.2018.07.024
34.
Hudson
,
L. T.
,
Jett
,
S. V.
,
Kramer
,
K. E.
,
Laurence
,
D. W.
,
Ross
,
C. J.
,
Towner
,
R. A.
,
Baumwart
,
R.
,
et al.
,
2020
, “
A Pilot Study on Linking Tissue Mechanics With Load-Dependent Collagen Microstructures in Porcine Tricuspid Valve Leaflets
,”
Bioengineering
,
7
(
2
), p.
60
.10.3390/bioengineering7020060
35.
Meador
,
W. D.
,
Mathur
,
M.
,
Sugerman
,
G. P.
,
Jazwiec
,
T.
,
Malinowski
,
M.
,
Bersi
,
M. R.
,
Timek
,
T. A.
, and
Rausch
,
M. K.
,
2020
, “
A Detailed Mechanical and Microstructural Analysis of Ovine Tricuspid Valve Leaflets
,”
Acta Biomat.
,
102
, pp.
100
113
.10.1016/j.actbio.2019.11.039
36.
Wu
,
M. C.
,
Zakerzadeh
,
R.
,
Kamensky
,
D.
,
Kiendl
,
J.
,
Sacks
,
M. S.
, and
Hsu
,
M. C.
,
2018
, “
An Anisotropic Constitutive Model for Immersogeometric Fluid–Structure Interaction Analysis of Bioprosthetic Heart Valves
,”
J. Biomech.
,
74
(
6
), pp.
23
31
.10.1016/j.jbiomech.2018.04.012
37.
Hou
,
J. C.
,
Maas
,
S. A.
,
Weiss
,
J. A.
, and
Ateshian
,
G. A.
,
2018
, “
Finite Element Formulation of Multiphasic Shell Elements for Cell Mechanics Analyses in Febio
,”
ASME J. Biomech. Eng.
,
140
(
12
), p. 121009.10.1115/1.4041043
38.
Stevanella
,
M.
,
Votta
,
E.
,
Lemma
,
M.
,
Antona
,
C.
, and
Redaelli
,
A.
,
2010
, “
Finite Element Modelling of the Tricuspid Valve: A Preliminary Study
,”
Med. Eng. Phys.
,
32
(
10
), pp.
1213
1223
.10.1016/j.medengphy.2010.08.013
39.
Burk
,
K. M.
,
Narayan
,
A.
, and
Orr
,
J. A.
,
2020
, “
Efficient Sampling for Polynomial Chaos-Based Uncertainty Quantification and Sensitivity Analysis Using Weighted Approximate Fekete Points
,”
Int. J. Numer. Methods Biomed. Eng.
,
36
(
11
), p.
e3395
.10.1002/cnm.3395
40.
Becker
,
W.
,
Rowson
,
J.
,
Oakley
,
J. E.
,
Yoxall
,
A.
,
Manson
,
G.
, and
Worden
,
K.
,
2011
, “
Bayesian Sensitivity Analysis of a Model of the Aortic Valve
,”
J. Biomech.
,
44
(
8
), pp.
1499
1506
. 10.1016/j.jbiomech.2011.03.008
41.
Mansi
,
T.
,
Voigt
,
I.
,
Georgescu
,
B.
,
Zheng
,
X.
,
Mengue
,
E. A.
,
Hackl
,
M.
,
Ionasec
,
R. I.
,
Noack
,
T.
,
Seeburger
,
J.
, and
Comaniciu
,
D.
,
2012
, “
An Integrated Framework for Finite-Element Modeling of Mitral Valve Biomechanics From Medical Images: Application to Mitralclip Intervention Planning
,”
Med. Image Anal.
,
16
(
7
), pp.
1330
1346
. 1010.1016/j.media.2012.05.009
42.
Grbic
,
S.
,
Easley
,
T. F.
,
Mansi
,
T.
,
Bloodworth
,
C. H.
,
Pierce
,
E. L.
,
Voigt
,
I.
,
Neumann
,
D.
, et al.,
2017
, “
Personalized Mitral Valve Closure Computation and Uncertainty Analysis From 3D Echocardiography
,”
Medical Image Anal.
,
35
(
1
), pp.
238
249
.10.1016/j.media.2016.03.011
43.
Narang
,
H.
,
Rego
,
B. V.
,
Khalighi
,
A. H.
,
Aly
,
A.
,
Pouch
,
A. M.
,
Gorman
,
R. C.
,
Gorman
,
J. H.
, III
,., and
Sacks
,
M. S.
,
2021
, “
Pre-Surgical Prediction of Ischemic Mitral Regurgitation Recurrence Using In vivo Mitral Valve Leaflet Strains
,”
Ann. Biomed. Eng.
,
49
(
12
), pp.
3711
3723
.10.1007/s10439-021-02772-5
44.
Votta
,
E.
,
Caiani
,
E.
,
Veronesi
,
F.
,
Soncini
,
M.
,
Montevecchi
,
F. M.
, and
Redaelli
,
A.
,
2008
, “
Mitral Valve Finite-Element Modelling From Ultrasound Data: A Pilot Study for a New Approach to Understand Mitral Function and Clinical Scenarios
,”
Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci.
,
366
(
1879
), pp.
3411
3434
.10.1098/rsta.2008.0095
45.
Wang
,
Q.
, and
Sun
,
W.
,
2013
, “
Finite Element Modeling of Mitral Valve Dynamic Deformation Using Patient-Specific Multi-Slices Computed Tomography Scans
,”
Ann. Biomed. Eng.
,
41
(
1
), pp.
142
153
.10.1007/s10439-012-0620-6
46.
Rausch
,
M. K.
,
Bothe
,
W.
,
Kvitting
,
J.
,
Göktepe
,
S.
,
Craig Miller
,
D.
, and
Kuhl
,
E.
,
2011
, “
In vivo Dynamic Strains of the Ovine Anterior Mitral Valve Leaflet
,”
J. Biomech.
,
44
(
6
), pp.
1149
1157
.10.1016/j.jbiomech.2011.01.020
47.
El-Tallawi
,
K. C.
,
Zhang
,
P.
,
Azencott
,
R.
,
He
,
J.
,
Herrera
,
E. L.
,
Xu
,
J.
,
Chamsi-Pasha
,
M.
,
Jacob
,
J.
,
Lawrie
,
G. M.
, and
Zoghbi
,
W. A.
,
2021
, “
Valve Strain Quantitation in Normal Mitral Valves and Mitral Prolapse With Variable Degrees of Regurgitation
,”
JACC: Cardiovasc. Imag.
,
14
(
6
), pp.
1099
1109
.10.1016/j.jcmg.2021.01.006
48.
Laurence
,
D. W.
,
Johnson
,
E. L.
,
Hsu
,
M. C.
,
Baumwart
,
R.
,
Mir
,
A.
,
Burkhart
,
H. M.
,
Holzapfel
,
G. A.
,
Wu
,
Y.
, and
Lee
,
C. H.
,
2020
, “
A Pilot in Silico Modeling-Based Study of the Pathological Effects on the Biomechanical Function of Tricuspid Valves
,”
Int. J. Numer. Methods Biomed. Eng.
,
36
(
7
), p.
7
.10.1002/cnm.3346
49.
Mathur
,
M.
,
Jazwiec
,
T.
,
Meador
,
W. D.
,
Malinowski
,
M.
,
Goehler
,
M.
,
Ferguson
,
H.
,
Timek
,
T. A.
, and
Rausch
,
M. K.
,
2019
, “
Tricuspid Valve Leaflet Strains in the Beating Ovine Heart
,”
Biomech. Model. Mechanobiol.
,
18
(
10
), pp.
1351
1361
.10.1007/s10237-019-01148-y
50.
Jimenez
,
J. H.
,
Soerensen
,
D. D.
,
He
,
Z.
,
Ritchie
,
J.
, and
Yoganathan
,
A. P.
,
2005
, “
Mitral Valve Function and Chordal Force Distribution Using a Flexible Annulus Model: An In vitro Study
,”
Ann. Biomed. Eng.
,
33
(
5
), pp.
557
566
.10.1007/s10439-005-1512-9
51.
Prot
,
V.
,
Haaverstad
,
R.
, and
Skallerud
,
B.
,
2009
, “
Finite Element Analysis of the Mitral Apparatus: Annulus Shape Effect and Chordal Force Distribution
,”
Biomech. Model. Mechanobiol.
,
8
(
1
), pp.
43
55
.10.1007/s10237-007-0116-8
52.
Kamensky
,
D.
,
Hsu
,
M.-C.
,
Schillinger
,
D.
,
Evans
,
J. A.
,
Aggarwal
,
A.
,
Bazilevs
,
Y.
,
Sacks
,
M. S.
, and
Hughes
,
T. J.
,
2015
, “
An Immersogeometric Variational Framework for Fluid–Structure Interaction: Application to Bioprosthetic Heart Valves
,”
Comput. Methods Appl. Mech. Eng.
,
284
, pp.
1005
1053
.10.1016/j.cma.2014.10.040
53.
Aggarwal
,
A.
, and
Sacks
,
M. S.
,
2016
, “
An Inverse Modeling Approach for Semilunar Heart Valve Leaflet Mechanics: Exploitation of Tissue Structure
,”
Biomech. Model. Mechanobiol.
,
15
(
4
), pp.
909
932
.10.1007/s10237-015-0732-7
54.
Morganti
,
S.
,
Auricchio
,
F.
,
Benson
,
D.
,
Gambarin
,
F.
,
Hartmann
,
S.
,
Hughes
,
T.
, and
Reali
,
A.
,
2015
, “
Patient-Specific Isogeometric Structural Analysis of Aortic Valve Closure
,”
Comput. Methods Appl. Mech. Eng.
,
284
, pp.
508
520
.10.1016/j.cma.2014.10.010
55.
Rupp
,
L. C.
,
Liu
,
Z.
,
Bergquist
,
J. A.
,
Rampersad
,
S.
,
White
,
D.
,
Tate
,
J. D.
,
Brooks
,
D. H.
,
Narayan
,
A.
, and
MacLeod
,
R. S.
,
2020
, “
Using Uncertainsci to Quantify Uncertainty in Cardiac Simulations
,”
Computing in Cardiology
, Rimini, Italy, Sept. 13–16, pp.
1
4
.10.22489/CinC.2020.275
56.
Pham
,
T.
,
Kong
,
F.
,
Martin
,
C.
,
Wang
,
Q.
,
Primiano
,
C.
,
McKay
,
R.
,
Elefteriades
,
J.
, and
Sun
,
W.
,
2017
, “
Finite Element Analysis of Patient-Specific Mitral Valve With Mitral Regurgitation
,”
Cardiovasc. Eng. Technol.
,
8
(
1
), pp.
3
16
.10.1007/s13239-016-0291-9
57.
Kong
,
F.
,
Pham
,
T.
,
Martin
,
C.
,
Elefteriades
,
J.
,
McKay
,
R.
,
Primiano
,
C.
, and
Sun
,
W.
,
2018
, “
Finite Element Analysis of Annuloplasty and Papillary Muscle Relocation on a Patient-Specific Mitral Regurgitation Model
,”
PLoS ONE
,
13
(
6
), p.
e0198331
.10.1371/journal.pone.0198331
58.
Martin
,
C.
, and
Sun
,
W.
,
2012
, “
Biomechanical Characterization of Aortic Valve Tissue in Humans and Common Animal Models
,”
J. Biomed. Mater. Res. Part A
,
100A
(
6
), pp.
1591
1599
.10.1002/jbm.a.34099
59.
Pham
,
T.
,
Sulejmani
,
F.
,
Shin
,
E.
,
Wang
,
D.
, and
Sun
,
W.
,
2017
, “
Quantification and Comparison of the Mechanical Properties of Four Human Cardiac Valves
,”
Acta Biomater.
,
54
, pp.
345
355
.10.1016/j.actbio.2017.03.026
60.
Sun
,
W.
, and
Sacks
,
M. S.
,
2005
, “
Finite Element Implementation of a Generalized Fung-Elastic Constitutive Model for Planar Soft Tissues
,”
Biomech. Model. Mechanobiol.
,
4
(
2–3
), pp.
190
199
.10.1007/s10237-005-0075-x
You do not currently have access to this content.