Abstract

Tissue-based transcatheter aortic valve (AV) replacement (TAVR) devices have been a breakthrough approach for treating aortic valve stenosis. However, with the expansion of TAVR to younger and lower risk patients, issues of long-term durability and thrombosis persist. Recent advances in polymeric valve technology facilitate designing more durable valves with minimal in vivo adverse reactions. We introduce our second-generation polymeric transcatheter aortic valve (TAV) device, designed and optimized to address these issues. We present the optimization process of the device, wherein each aspect of device deployment and functionality was optimized for performance, including unique considerations of polymeric technologies for reducing the volume of the polymer material for lower crimped delivery profiles. The stent frame was optimized to generate larger radial forces with lower material volumes, securing robust deployment and anchoring. The leaflet shape, combined with varying leaflets thickness, was optimized for reducing the flexural cyclic stresses and the valve's hydrodynamics. Our first-generation polymeric device already demonstrated that its hydrodynamic performance meets and exceeds tissue devices for both ISO standard and patient-specific in vitro scenarios. The valve already reached 900 × 106 cycles of accelerated durability testing, equivalent to over 20 years in a patient. The optimization framework and technology led to the second generation of polymeric TAV design- currently undergoing in vitro hydrodynamic testing and following in vivo animal trials. As TAVR use is rapidly expanding, our rigorous bio-engineering optimization methodology and advanced polymer technology serve to establish polymeric TAV technology as a viable alternative to the challenges facing existing tissue-based TAV technology.

References

1.
Lerman
,
D. A.
,
Prasad
,
S.
, and
Alotti
,
N.
,
2015
, “
Calcific Aortic Valve Disease: Molecular Mechanisms and Therapeutic Approaches
,”
Eur. Cardiol.
,
10
(
2
), pp.
108
112
.10.15420/ecr.2015.10.2.108
2.
Richards
,
J.
,
El-Hamamsy
,
I.
,
Chen
,
S.
,
Sarang
,
Z.
,
Sarathchandra
,
P.
,
Yacoub
,
M. H.
,
Chester
,
A. H.
, and
Butcher
,
J. T.
,
2013
, “
Side-Specific Endothelial-Dependent Regulation of Aortic Valve Calcification: Interplay of Hemodynamics and Nitric Oxide Signaling
,”
Am. J. Pathol.
,
182
(
5
), pp.
1922
1931
.10.1016/j.ajpath.2013.01.037
3.
Freeman
,
R. V.
, and
Otto
,
C. M.
,
2005
, “
Spectrum of Calcific Aortic Valve Disease: Pathogenesis, Disease Progression, and Treatment Strategies
,”
Circulation
,
111
(
24
), pp.
3316
3326
.10.1161/CIRCULATIONAHA.104.486738
4.
Butcher
,
J. T.
,
Mahler
,
G. J.
, and
Hockaday
,
L. A.
,
2011
, “
Aortic Valve Disease and Treatment: The Need for Naturally Engineered Solutions
,”
Adv. Drug Deliv. Rev.
,
63
(
4–5
), pp.
242
268
.10.1016/j.addr.2011.01.008
5.
Bates
,
E. R.
,
2011
, “
Treatment Options in Severe Aortic Stenosis
,”
Circulation
,
124
(
3
), pp.
355
359
.10.1161/CIRCULATIONAHA.110.974204
6.
Ross
,
J.
, and
Braunwald
,
E.
,
1968
, “
Aortic Stenosis
,”
Circulation
,
38
(
1s5
), pp.
V-61
V-67
.10.1161/01.CIR.38.1S5.V-61
7.
Fatima
,
B.
,
Mohananey
,
D.
,
Khan
,
F. W.
,
Jobanputra
,
Y.
,
Tummala
,
R.
,
Banerjee
,
K.
,
Krishnaswamy
,
A.
,
Mick
,
S.
,
Tuzcu
,
E. M.
,
Blackstone
,
E.
,
Svensson
,
L.
, and
Kapadia
,
S.
,
2019
, “
Durability Data for Bioprosthetic Surgical Aortic Valve: A Systematic Review
,”
JAMA Cardiol.
,
4
(
1
), pp.
71
80
.10.1001/jamacardio.2018.4045
8.
Cribier
,
A.
,
2017
, “
The Development of Transcatheter Aortic Valve Replacement (TAVR)
,”
Glob Cardiol. Sci. Pract.
,
2016
(
4
), p.
e201632
.10.21542/gcsp.2016.32
9.
Carroll
,
J. D.
,
Mack
,
M. J.
,
Vemulapalli
,
S.
,
Herrmann
,
H. C.
,
Gleason
,
T. G.
,
Hanzel
,
G.
,
Deeb
,
G. M.
,
Thourani
,
V. H.
,
Cohen
,
D. J.
,
Desai
,
N.
,
Kirtane
,
A. J.
,
Fitzgerald
,
S.
,
Michaels
,
J.
,
Krohn
,
C.
,
Masoudi
,
F. A.
,
Brindis
,
R. G.
, and
Bavaria
,
J. E.
,
2021
, “
STS-ACC TVT Registry of Transcatheter Aortic Valve Replacement
,”
Ann. Thorac. Surg.
,
111
(
2
), pp.
701
722
.10.1016/j.athoracsur.2020.09.002
10.
Winter
,
M.-P.
,
Bartko
,
P.
,
Hofer
,
F.
,
Zbiral
,
M.
,
Burger
,
A.
,
Ghanim
,
B.
,
Kastner
,
J.
,
Lang
,
I. M.
,
Mascherbauer
,
J.
,
Hengstenberg
,
C.
, and
Goliasch
,
G.
,
2020
, “
Evolution of Outcome and Complications in TAVR: A Meta-Analysis of Observational and Randomized Studies
,”
Sci. Rep.
,
10
(
1
), p.
15568
.10.1038/s41598-020-72453-1
11.
Bjursten
,
H.
,
Norrving
,
B.
, and
Ragnarsson
,
S.
,
2021
, “
Late Stroke After Transcatheter Aortic Valve Replacement: A Nationwide Study
,”
Sci. Rep.
,
11
(
1
), p.
9593
.10.1038/s41598-021-89217-0
12.
Makkar
,
R. R.
,
Fontana
,
G.
,
Jilaihawi
,
H.
,
Chakravarty
,
T.
,
Kofoed
,
K. F.
,
De Backer
,
O.
,
Asch
,
F. M.
,
Ruiz
,
C. E.
,
Olsen
,
N. T.
,
Trento
,
A.
,
Friedman
,
J.
,
Berman
,
D.
,
Cheng
,
W.
,
Kashif
,
M.
,
Jelnin
,
V.
,
Kliger
,
C. A.
,
Guo
,
H.
,
Pichard
,
A. D.
,
Weissman
,
N. J.
,
Kapadia
,
S.
,
Manasse
,
E.
,
Bhatt
,
D. L.
,
Leon
,
M. B.
, and
Søndergaard
,
L.
,
2015
, “
Possible Subclinical Leaflet Thrombosis in Bioprosthetic Aortic Valves
,”
New Engl. J. Med.
,
373
(
21
), pp.
2015
2024
.10.1056/NEJMoa1509233
13.
Latib
,
A.
,
Naganuma
,
T.
,
Abdel-Wahab
,
M.
,
Danenberg
,
H.
,
Cota
,
L.
,
Barbanti
,
M.
,
Baumgartner
,
H.
,
Finkelstein
,
A.
,
Legrand
,
V.
,
de Lezo
,
J. S.
,
Kefer
,
J.
,
Messika-Zeitoun
,
D.
,
Richardt
,
G.
,
Stabile
,
E.
,
Kaleschke
,
G.
,
Vahanian
,
A.
,
Laborde
,
J. C.
,
Leon
,
M. B.
,
Webb
,
J. G.
,
Panoulas
,
V. F.
,
Maisano
,
F.
,
Alfieri
,
O.
, and
Colombo
,
A.
,
2015
, “
Treatment and Clinical Outcomes of Transcatheter Heart Valve Thrombosis
,”
Circ. Cardiovasc. Interv.
, 8(4), p. e001779.10.1161/CIRCINTERVENTIONS.114.001779
14.
Dvir
,
D.
,
Bourguignon
,
T.
,
Otto
,
C. M.
,
Hahn
,
R. T.
,
Rosenhek
,
R.
,
Webb
,
J. G.
,
Treede
,
H.
,
Sarano
,
M. E.
,
Feldman
,
T.
,
Wijeysundera
,
H. C.
,
Topilsky
,
Y.
,
Aupart
,
M.
,
Reardon
,
M. J.
,
Mackensen
,
G. B.
,
Szeto
,
W. Y.
,
Kornowski
,
R.
,
Gammie
,
J. S.
,
Yoganathan
,
A. P.
,
Arbel
,
Y.
,
Borger
,
M. A.
,
Simonato
,
M.
,
Reisman
,
M.
,
Makkar
,
R. R.
,
Abizaid
,
A.
,
McCabe
,
J. M.
,
Dahle
,
G.
,
Aldea
,
G. S.
,
Leipsic
,
J.
,
Pibarot
,
P.
,
Moat
,
N. E.
,
Mack
,
M. J.
,
Kappetein
,
A. P.
,
Leon
,
M. B.
, and
Investigators
,
V.
,
2018
, “
Standardized Definition of Structural Valve Degeneration for Surgical and Transcatheter Bioprosthetic Aortic Valves
,”
Circulation
,
137
(
4
), pp.
388
399
.10.1161/CIRCULATIONAHA.117.030729
15.
Hatoum
,
H.
,
Gooden Shelley
,
C. M.
,
Sathananthan
,
J.
,
Sellers
,
S.
,
Kutting
,
M.
,
Marx
,
P.
,
Lilly Scott
,
M.
,
Ihdayhid Abdul
,
R.
,
Thourani Vinod
,
H.
, and
Dasi Lakshmi
,
P.
,
2021
, “
Neosinus and Sinus Flow After Self-Expanding and Balloon-Expandable Transcatheter Aortic Valve Replacement
,”
JACC: Cardiovasc. Interven.
,
14
(
24
), pp.
2657
2666
.10.1016/j.jcin.2021.09.013
16.
Raghav
,
V.
,
Midha
,
P.
,
Sharma
,
R.
,
Babaliaros
,
V.
, and
Yoganathan
,
A.
,
2021
, “
Transcatheter Aortic Valve Thrombosis: A Review of Potential Mechanisms
,”
J. R. Soc. Interface
,
18
(
184
), p.
20210599
.10.1098/rsif.2021.0599
17.
Briffa
,
N.
, and
Chambers
,
J. B.
,
2017
, “
Biological Valves in Younger Patients Undergoing Aortic Valve Replacement
,”
Circulation
,
135
(
12
), pp.
1101
1103
.10.1161/CIRCULATIONAHA.116.026385
18.
Roe
,
B. B.
, and
Moore
,
D.
,
1958
, “
Design and Fabrication of Prosthetic Valves
,”
Exp. Med. Surg.
,
16
(
2–3
), pp.
177
182
.https://pubmed.ncbi.nlm.nih.gov/13586325/
19.
Bezuidenhout
,
D.
,
Williams
,
D. F.
, and
Zilla
,
P.
,
2015
, “
Polymeric Heart Valves for Surgical Implantation, Catheter-Based Technologies and Heart Assist Devices
,”
Biomaterials
,
36
, pp.
6
25
.10.1016/j.biomaterials.2014.09.013
20.
Pinchuk
,
L.
,
Boden
,
M.
, and
Bluestein
,
D.
,
2021
, “
Chapter 11 - the Use of Poly(Styrene-Block-Isobutylene-Block-Styrene) and Analogs for Long-Term Implant Applications
,”
Macromolecular Engineering
,
A.
Lubnin
, and
G.
Erdodi
, eds.,
Elsevier
, Amsterdam, The Netherlands, pp.
211
235
.
21.
Claiborne
,
T. E.
,
Girdhar
,
G.
,
Gallocher-Lowe
,
S.
,
Sheriff
,
J.
,
Kato
,
Y. P.
,
Pinchuk
,
L.
,
Schoephoerster
,
R. T.
,
Jesty
,
J.
, and
Bluestein
,
D.
,
2011
, “
Thrombogenic Potential of Innovia Polymer Valves Versus Carpentier-Edwards Perimount Magna Aortic Bioprosthetic Valves
,”
ASAIO J.
,
57
(
1
), pp.
26
31
.10.1097/MAT.0b013e3181fcbd86
22.
Sheriff
,
J.
,
Claiborne
,
T. E.
,
Tran
,
P. L.
,
Kothadia
,
R.
,
George
,
S.
,
Kato
,
Y. P.
,
Pinchuk
,
L.
,
Slepian
,
M. J.
, and
Bluestein
,
D.
,
2015
, “
Physical Characterization and Platelet Interactions Under Shear Flows of a Novel Thermoset Polyisobutylene-Based Co-Polymer
,”
ACS Appl. Mater Interfaces
,
7
(
39
), pp.
22058
22066
.10.1021/acsami.5b07254
23.
Rotman
,
O. M.
,
Kovarovic
,
B.
,
Chiu
,
W. C.
,
Bianchi
,
M.
,
Marom
,
G.
,
Slepian
,
M. J.
, and
Bluestein
,
D.
,
2019
, “
Novel Polymeric Valve for Transcatheter Aortic Valve Replacement Applications: In Vitro Hemodynamic Study
,”
Ann. Biomed. Eng.
,
47
(
1
), pp.
113
125
.10.1007/s10439-018-02119-7
24.
Stasiak
,
J. R.
,
Serrani
,
M.
,
Biral
,
E.
,
Taylor
,
J. V.
,
Zaman
,
A. G.
,
Jones
,
S.
,
Ness
,
T.
,
De Gaetano
,
F.
,
Costantino
,
M. L.
,
Bruno
,
V. D.
,
Suleiman
,
S.
,
Ascione
,
R.
, and
Moggridge
,
G. D.
,
2020
, “
Design, Development, Testing at ISO Standards and In Vivo Feasibility Study of a Novel Polymeric Heart Valve Prosthesis
,”
Biomater. Sci.
,
8
(
16
), pp.
4467
4480
.10.1039/D0BM00412J
25.
Jenney
,
C.
,
Millson
,
P.
,
Grainger
,
D. W.
,
Grubbs
,
R.
,
Gunatillake
,
P.
,
McCarthy
,
S. J.
,
Runt
,
J.
, and
Beith
,
J.
,
2021
, “
Assessment of a Siloxane Poly(Urethane‐Urea) Elastomer Designed for Implantable Heart Valve Leaflets
,”
Adv. NanoBiomed. Res.
,
1
(
2
), p.
2000032
.10.1002/anbr.202000032
26.
Rahmani
,
B.
,
Tzamtzis
,
S.
,
Sheridan
,
R.
,
Mullen
,
M. J.
,
Yap
,
J.
,
Seifalian
,
A. M.
, and
Burriesci
,
G.
,
2017
, “
In Vitro Hydrodynamic Assessment of a New Transcatheter Heart Valve Concept (the TRISKELE)
,”
J. Cardiovasc. Transl. Res.
,
10
(
2
), pp.
104
115
.10.1007/s12265-016-9722-0
27.
Rahmani
,
B.
,
Tzamtzis
,
S.
,
Sheridan
,
R.
,
Mullen
,
M. J.
,
Yap
,
J.
,
Seifalian
,
A. M.
, and
Burriesci
,
G.
,
2016
, “
A New Transcatheter Heart Valve Concept (the TRISKELE): Feasibility in an Acute Preclinical Model
,”
EuroIntervention
,
12
(
7
), pp.
901
908
.10.4244/EIJV12I7A148
28.
Coulter
,
F. B.
,
Schaffner
,
M.
,
Faber
,
J. A.
,
Rafsanjani
,
A.
,
Smith
,
R.
,
Appa
,
H.
,
Zilla
,
P.
,
Bezuidenhout
,
D.
, and
Studart
,
A. R.
,
2019
, “
Bioinspired Heart Valve Prosthesis Made by Silicone Additive Manufacturing
,”
Matter
,
1
(
1
), pp.
266
279
.10.1016/j.matt.2019.05.013
29.
Claiborne
,
T. E.
,
Sheriff
,
J.
,
Kuetting
,
M.
,
Steinseifer
,
U.
,
Slepian
,
M. J.
, and
Bluestein
,
D.
,
2013
, “
In Vitro Evaluation of a Novel Hemodynamically Optimized Trileaflet Polymeric Prosthetic Heart Valve
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021021
.10.1115/1.4023235
30.
Rotman
,
O. M.
,
Kovarovic
,
B.
,
Bianchi
,
M.
,
Slepian
,
M. J.
, and
Bluestein
,
D.
,
2020
, “
In Vitro Durability and Stability Testing of a Novel Polymeric Transcatheter Aortic Valve
,”
ASAIO J.
,
66
(
2
), pp.
190
198
.10.1097/MAT.0000000000000980
31.
Yin
,
W.
,
Gallocher
,
S.
,
Pinchuk
,
L.
,
Schoephoerster
,
R. T.
,
Jesty
,
J.
, and
Bluestein
,
D.
,
2005
, “
Flow-Induced Platelet Activation in a St. Jude Mechanical Heart Valve, a Trileaflet Polymeric Heart Valve, and a St. Jude Tissue Valve
,”
Artif Organs
,
29
(
10
), pp.
826
831
.10.1111/j.1525-1594.2005.29109.x
32.
Piatti
,
F.
,
Sturla
,
F.
,
Marom
,
G.
,
Sheriff
,
J.
,
Claiborne
,
T. E.
,
Slepian
,
M. J.
,
Redaelli
,
A.
, and
Bluestein
,
D.
,
2015
, “
Hemodynamic and Thrombogenic Analysis of a Trileaflet Polymeric Valve Using a Fluid-Structure Interaction Approach
,”
J. Biomech.
,
48
(
13
), pp.
3641
3649
.10.1016/j.jbiomech.2015.08.009
33.
Claiborne
,
T. E.
,
Xenos
,
M.
,
Sheriff
,
J.
,
Chiu
,
W.-C.
,
Soares
,
J.
,
Alemu
,
Y.
,
Gupta
,
S.
,
Judex
,
S.
,
Slepian
,
M. J.
, and
Bluestein
,
D.
,
2013
, “
Toward Optimization of a Novel Trileaflet Polymeric Prosthetic Heart Valve Via Device Thrombogenicity Emulation
,”
ASAIO J.
,
59
(
3
), pp.
275
283
.10.1097/MAT.0b013e31828e4d80
34.
Kovarovic
,
B. J.
,
Rotman
,
O. M.
,
Parikh
,
P.
,
Slepian
,
M. J.
, and
Bluestein
,
D.
,
2021
, “
Patient-Specific In Vitro Testing for Evaluating TAVR Clinical performance-A Complementary Approach to Current ISO Standard Testing
,”
Artif. Organs
,
45
(
4
), pp.
E41
E52
.10.1111/aor.13841
35.
Ghosh
,
R. P.
,
Marom
,
G.
,
Bianchi
,
M.
,
D'souza
,
K.
,
Zietak
,
W.
, and
Bluestein
,
D.
,
2020
, “
Numerical Evaluation of Transcatheter Aortic Valve Performance During Heart Beating and Its Post-Deployment Fluid–Structure Interaction Analysis
,”
Biomech. Model. Mechanobiol.
,
19
(
5
), pp.
1725
1740
.10.1007/s10237-020-01304-9
36.
Nematzadeh
,
F.
, and
Sadrnezhaad
,
S. K.
,
2012
, “
Effects of Material Properties on Mechanical Performance of Nitinol Stent Designed for Femoral Artery: Finite Element Analysis
,”
Sci. Iran.
,
19
(
6
), pp.
1564
1571
.10.1016/j.scient.2012.10.024
37.
IOF
Standardization
,
2021
, “
Cardiovascular Implants—Cardiac Valve Prostheses—Part 3: Heart Valve Substitutes Implanted by Transcatheter Techniques
,” International Organization for Standardization, Geneva, Switzerland, Standard No.
ISO 5840-3:2021
, p.
57
.https://www.iso.org/standard/67606.html
38.
Johnson
,
N. P.
,
Zelis
,
J. M.
,
Tonino
,
P. A. L.
,
Houthuizen
,
P.
,
Bouwman
,
R. A.
,
Brueren
,
G. R. G.
,
Johnson
,
D. T.
,
Koolen
,
J. J.
,
Korsten
,
H. H. M.
,
Wijnbergen
,
I. F.
,
Zimmermann
,
F. M.
,
Kirkeeide
,
R. L.
,
Pijls
,
N. H. J.
, and
Gould
,
K. L.
,
2018
, “
Pressure Gradient vs. flow Relationships to Characterize the Physiology of a Severely Stenotic Aortic Valve Before and After Transcatheter Valve Implantation
,”
Eur. Heart J.
,
39
(
28
), pp.
2646
2655
.10.1093/eurheartj/ehy126
39.
Sathananthan
,
J.
,
Hensey
,
M.
,
Landes
,
U.
,
Alkhodair
,
A.
,
Saiduddin
,
A.
,
Sellers
,
S.
,
Cheung
,
A.
,
Lauck
,
S.
,
Blanke
,
P.
,
Leipsic
,
J.
,
Ye
,
J.
,
Wood
,
D. A.
, and
Webb
,
J. G.
,
2020
, “
Long-Term Durability of Transcatheter Heart Valves: Insights From Bench Testing to 25 Years
,”
JACC: Cardiovasc. Interven.
,
13
(
2
), pp.
235
249
.10.1016/j.jcin.2019.07.049
40.
Chiu
,
W. C.
,
Tran
,
P. L.
,
Khalpey
,
Z.
,
Lee
,
E.
,
Woo
,
Y.-R.
,
Slepian
,
M. J.
, and
Bluestein
,
D.
,
2019
, “
Device Thrombogenicity Emulation: An in Silico Predictor of In Vitro and In Vivo Ventricular Assist Device Thrombogenicity
,”
Sci. Rep.
,
9
(
1
), p.
2946
.10.1038/s41598-019-39897-6
You do not currently have access to this content.