Abstract

Traumatic brain injury (TBI) contributes to a significant portion of the injuries resulting from motor vehicle crashes, falls, and sports collisions. The development of advanced countermeasures to mitigate these injuries requires a complete understanding of the tolerance of the human brain to injury. In this study, we developed a new method to establish human injury tolerance levels using an integrated database of reconstructed football impacts, subinjurious human volunteer data, and nonhuman primate data. The human tolerance levels were analyzed using tissue-level metrics determined using harmonized species-specific finite element (FE) brain models. Kinematics-based metrics involving complete characterization of angular motion (e.g., diffuse axonal multi-axial general evaluation (DAMAGE)) showed better power of predicting tissue-level deformation in a variety of impact conditions and were subsequently used to characterize injury tolerance. The proposed human brain tolerances for mild and severe TBI were estimated and presented in the form of injury risk curves based on selected tissue-level and kinematics-based injury metrics. The application of the estimated injury tolerances was finally demonstrated using real-world automotive crash data.

References

1.
World Health Organization
,
2013
,
Global Status Report on Road Safety 2013: Supporting a Decade of Action: Summary
,
World Health Organization
, Geneva, Switzerland.
2.
Pellman
,
E. J.
,
Viano
,
D. C.
,
Tucker
,
A. M.
,
Casson
,
I. R.
, and
Waeckerle
,
J. F.
,
2003
, “
Concussion in Professional Football: Reconstruction of Game Impacts and Injuries
,”
Neurosurgery
,
53
(
4
), pp.
799
814
.10.1093/neurosurgery/53.3.799
3.
Rowson
,
S.
,
Duma
,
S. M.
,
Beckwith
,
J. G.
,
Chu
,
J. J.
,
Greenwald
,
R. M.
,
Crisco
,
J. J.
,
Brolinson
,
P. G.
,
Duhaime
,
A.-C.
,
McAllister
,
T. W.
, and
Maerlender
,
A. C.
,
2012
, “
Rotational Head Kinematics in Football Impacts: An Injury Risk Function for Concussion
,”
Ann. Biomed. Eng.
,
40
(
1
), pp.
1
13
.10.1007/s10439-011-0392-4
4.
Rowson
,
S.
, and
Duma
,
S. M.
,
2013
, “
Brain Injury Prediction: Assessing the Combined Probability of Concussion Using Linear and Rotational Head Acceleration
,”
Ann. Biomed. Eng.
,
41
(
5
), pp.
873
882
.10.1007/s10439-012-0731-0
5.
Takhounts
,
E. G.
,
Craig
,
M. J.
,
Moorhouse
,
K.
,
McFadden
,
J.
, and
Hasija
,
V.
,
2013
, “
Development of Brain Injury Criteria (BrIC)
,”
SAE
Paper No. 2013-22-0010.https://pubmed.ncbi.nlm.nih.gov/24435734/
6.
Versace
,
J.
,
1971
, “
A Review of the Severity Index
,”
SAE
Paper No. 710881.10.4271/710881
7.
Gabler
,
L. F.
,
Crandall
,
J. R.
, and
Panzer
,
M. B.
,
2019
, “
Development of a Second-Order System for Rapid Estimation of Maximum Brain Strain
,”
Ann. Biomed. Eng.
,
47
(
9
), pp.
1971
1981
.10.1007/s10439-018-02179-9
8.
Gabler
,
L. F.
,
Crandall
,
J. R.
, and
Panzer
,
M. B.
,
2018
, “
Development of a Metric for Predicting Brain Strain Responses Using Head Kinematics
,”
Ann. Biomed. Eng.
,
46
(
7
), pp.
972
985
.10.1007/s10439-018-2015-9
9.
Bailey
,
A. M.
,
Sanchez
,
E. J.
,
Park
,
G.
,
Gabler
,
L. F.
,
Funk
,
J. R.
,
Crandall
,
J. R.
,
Wonnacott
,
M.
,
Withnall
,
C.
,
Myers
,
B. S.
, and
Arbogast
,
K. B.
,
2020
, “
Development and Evaluation of a Test Method for Assessing the Performance of American Football Helmets
,”
Ann. Biomed. Eng.
,
48
(
11
), pp.
2566
2579
.10.1007/s10439-020-02626-6
10.
Alshareef
,
A.
,
Giudice
,
J. S.
,
Forman
,
J.
,
Shedd
,
D. F.
,
Reynier
,
K. A.
,
Wu
,
T.
,
Sochor
,
S.
,
Sochor
,
M. R.
,
Salzar
,
R. S.
, and
Panzer
,
M. B.
,
2020
, “
Biomechanics of the Human Brain During Dynamic Rotation of the Head
,”
J. Neurotrauma
,
37
(
13
), pp.
1546
1555
.10.1089/neu.2019.6847
11.
Holbourn
,
A.
,
1943
, “
Mechanics of Head Injuries
,”
Lancet
,
242
(
6267
), pp.
438
441
.10.1016/S0140-6736(00)87453-X
12.
Gennarelli
,
T. A.
,
Thibault
,
L.
, and
Ommaya
,
A. K.
,
1972
, “
Pathophysiologic Responses to Rotational and Translational Accelerations of the Head
,”
SAE
Paper No. 720970.10.4271/720970
13.
Ommaya
,
A. K.
, and
Gennarelli
,
T.
,
1974
, “
Cerebral Concussion and Traumatic Unconsciousness: Correlation of Experimental and Clinical Observations on Blunt Head Injuries
,”
Brain
,
97
(
1
), pp.
633
654
.10.1093/brain/97.1.633
14.
Takahashi
,
Y.
, and
Yanaoka
,
T.
,
2017
, “
A Study of Injury Criteria for Brain Injuries in Traffic Accidents
,”
International Technical Conference on the Enhanced Safety of Vehicles
, Detroit, MI, June 5–8,
National Highway Traffic Safety Administration
, Washington, DC, Paper No. 17–0040.https://www-nrd.nhtsa.dot.gov/departments/esv/25th/
15.
O'Connor
,
K. L.
,
Rowson
,
S.
,
Duma
,
S. M.
, and
Broglio
,
S. P.
,
2017
, “
Head-Impact–Measurement Devices: A Systematic Review
,”
J. Athletic Train.
,
52
(
3
), pp.
206
227
.10.4085/1062-6050.52.2.05
16.
Sahoo
,
D.
,
Deck
,
C.
, and
Willinger
,
R.
,
2016
, “
Brain Injury Tolerance Limit Based on Computation of Axonal Strain
,”
Accid. Anal. Prev.
,
92
, pp.
53
70
.10.1016/j.aap.2016.03.013
17.
Funk
,
J. R.
,
Jadischke
,
R.
,
Bailey
,
A.
,
Crandall
,
J.
,
McCarthy
,
J.
,
Arbogast
,
K.
, and
Myers
,
B.
,
2020
, “
Laboratory Reconstructions of Concussive Helmet-to-Helmet Impacts in the National Football League
,”
Ann. Biomed. Eng.
,
48
(
11
), pp.
2652
2666
.10.1007/s10439-020-02632-8
18.
Kimpara
,
H.
, and
Iwamoto
,
M.
,
2012
, “
Mild Traumatic Brain Injury Predictors Based on Angular Accelerations During Impacts
,”
Ann. Biomed. Eng.
,
40
(
1
), pp.
114
126
.10.1007/s10439-011-0414-2
19.
Newman
,
J.
,
Barr
,
C.
,
Beusenberg
,
M. C.
,
Fournier
,
E.
,
Shewchenko
,
N.
,
Welbourne
,
E.
, and
Withnall
,
C.
,
2000
, “
A New Biomechanical Assessment of Mild Traumatic Brain Injury. Part 2: Results and Conclusions
,”
Proceedings of the International Research Council on the Biomechanics of Injury Conference
, Montpelier, France, Sept. 20–22,
International Research Council on Biomechanics of Injury
, pp.
223
230
.http://worldcat.org/isbn/295142101X
20.
Sanchez
,
E. J.
,
Gabler
,
L. F.
,
Good
,
A. B.
,
Funk
,
J. R.
,
Crandall
,
J. R.
, and
Panzer
,
M. B.
,
2019
, “
A Reanalysis of Football Impact Reconstructions for Head Kinematics and Finite Element Modeling
,”
Clin. Biomech.
,
64
, pp.
82
89
.10.1016/j.clinbiomech.2018.02.019
21.
Ommaya
,
A.
, and
Hirsch
,
A.
,
1971
, “
Tolerances for Cerebral Concussion From Head Impact and Whiplash in Primates
,”
J. Biomech.
,
4
(
1
), pp.
13
21
.10.1016/0021-9290(71)90011-X
22.
Ono
,
K.
,
Kikuchi
,
A.
,
Nakamura
,
M.
,
Kobayashi
,
H.
, and
Nakamura
,
N.
,
1980
, “
Human Head Tolerance to Sagittal Impact—Reliable Estimation Deduced From Experimental Head Injury Using Subhuman Primates and Human Cadaver Skulls
,”
SAE Trans.
,
89
, pp.
3837
3866
.10.4271/801303
23.
Margulies
,
S. S.
, and
Thibault
,
L. E.
,
1989
, “
An Analytical Model of Traumatic Diffuse Brain Injury
,”
ASME J. Biomech. Eng.
,
111
(
3
), pp.
241
249
.10.1115/1.3168373
24.
Panzer
,
M. B.
,
Wood
,
G. W.
, and
Bass
,
C. R.
,
2014
, “
Scaling in Neurotrauma: How Do We Apply Animal Experiments to People?
,”
Exp. Neurol.
,
261
, pp.
120
126
.10.1016/j.expneurol.2014.07.002
25.
Wu
,
T.
,
Antona-Makoshi
,
J.
,
Alshareef
,
A.
,
Giudice
,
J. S.
, and
Panzer
,
M. B.
,
2020
, “
Investigation of Cross-Species Scaling Methods for Traumatic Brain Injury Using Finite Element Analysis
,”
J. Neurotrauma
,
37
(
2
), pp.
410
422
.10.1089/neu.2019.6576
26.
Sanchez
,
E. J.
,
Gabler
,
L. F.
,
McGhee
,
J. S.
,
Olszko
,
A. V.
,
Chancey
,
V. C.
,
Crandall
,
J. R.
, and
Panzer
,
M. B.
,
2017
, “
Evaluation of Head and Brain Injury Risk Functions Using Sub-Injurious Human Volunteer Data
,”
J. Neurotrauma
,
34
(
16
), pp.
2410
2424
.10.1089/neu.2016.4681
27.
Elkin
,
B. S.
,
Gabler
,
L. F.
,
Panzer
,
M. B.
, and
Siegmund
,
G. P.
,
2019
, “
Brain Tissue Strains Vary With Head Impact Location: A Possible Explanation for Increased Concussion Risk in Struck Versus Striking Football Players
,”
Clin. Biomech.
,
64
, pp.
49
57
.10.1016/j.clinbiomech.2018.03.021
28.
Jean
,
A.
,
Nyein
,
M. K.
,
Zheng
,
J. Q.
,
Moore
,
D. F.
,
Joannopoulos
,
J. D.
, and
Radovitzky
,
R.
,
2014
, “
An Animal-to-Human Scaling Law for Blast-Induced Traumatic Brain Injury Risk Assessment
,”
Proc. Natl. Acad. Sci.
,
111
(
43
), pp.
15310
15315
.10.1073/pnas.1415743111
29.
Wu
,
T.
,
Hajiaghamemar
,
M.
,
Giudice
,
J. S.
,
Alshareef
,
A.
,
Margulies
,
S.
, and
Panzer
,
M. B.
,
2021
, “
Evaluation of Tissue-Level Brain Injury Metrics Using Species-Specific Simulations
,”
J. Neurotrauma
,
38
(
13
), pp.
1879
1888
.10.1089/neu.2020.7445
30.
Giudice
,
J. S.
,
Zeng
,
W.
,
Wu
,
T.
,
Alshareef
,
A.
,
Shedd
,
D. F.
, and
Panzer
,
M. B.
,
2019
, “
An Analytical Review of the Numerical Methods Used for Finite Element Modeling of Traumatic Brain Injury
,”
Ann. Biomed. Eng.
,
47
(
9
), pp.
1855
1872
.10.1007/s10439-018-02161-5
31.
Ewing
,
C. L.
, and
Thomas
,
D. J.
,
1972
,
Human Head and Neck Response to Impact Acceleration
,
Naval Aerospace Medical Research Lab
,
Pensacola, FL
.
32.
Kikuchi
,
A.
,
1982
, “
Human Head Tolerance to Lateral Impact Deduced From Experimental Head Injuries Using Primates
,”
Proceedings of the Ninth International Technical Conference on Experimental Safety Vehicles
, Kyoto, Japan, Nov. 1–4, pp.
251
261
.https://www.semanticscholar.org/paper/Human-head-tolerance-to-lateral-impact-deduced-from-Kikuchi-Ono/de24f0df2fbb87314858189c1201caddbdca0347
33.
Gennarelli
,
T. A.
,
Thibault
,
L. E.
,
Tomei
,
G.
,
Wiser
,
R.
,
Graham
,
D.
, and
Adams
,
J.
,
1987
, “
Directional Dependence of Axonal Brain Injury Due to Centroidal and Non-Centroidal Acceleration
,”
SAE
Paper No. 872197.10.4271/872197
34.
Margulies
,
S. S.
, and
Thibault
,
L. E.
,
1992
, “
A Proposed Tolerance Criterion for Diffuse Axonal Injury in Man
,”
J. Biomech.
,
25
(
8
), pp.
917
923
.10.1016/0021-9290(92)90231-O
35.
Mendis
,
K.
,
1992
, “
Finite Element Modeling of the Brain to Establish Diffuse Axonal Injury Criteria
,”
Ph.D. thesis
,
The Ohio State University
,
Columbus, OH
.https://www.proquest.com/openview/64a4de6de9fa47aedd7da967c5ca358f/1?pqorigsite=gscholar&cbl=18750&diss=y
36.
Nusholtz
,
G. S.
,
Kaiker
,
P. S.
, and
Lehman
,
R. J.
,
1986
, “
Critical Limitations on Significant Factors in Head Injury Research
,”
SAE
Paper No. 861890.https://www.jstor.org/stable/44470982
37.
Stalnaker
,
R. L.
,
Roberts
,
V. L.
, and
McElhaney
,
J. H.
,
1973
, “
Side Impact Tolerance to Blunt Trauma
,”
SAE
Paper No. 730979.10.4271/730979
38.
Mao
,
H.
,
Zhang
,
L.
,
Jiang
,
B.
,
Genthikatti
,
V. V.
,
Jin
,
X.
,
Zhu
,
F.
,
Makwana
,
R.
,
2013
, “
Development of a Finite Element Human Head Model Partially Validated With Thirty Five Experimental Cases
,”
ASME J. Biomech. Eng.
,
135
(
11
), p.
111002
.10.1115/1.4025101
39.
Wu
,
T.
,
Alshareef
,
A.
,
Giudice
,
J. S.
, and
Panzer
,
M. B.
,
2019
, “
Explicit Modeling of White Matter Axonal Fiber Tracts in a Finite Element Brain Model
,”
Ann. Biomed. Eng.
,
47
(
9
), pp.
1908
1922
.10.1007/s10439-019-02239-8
40.
Antona-Makoshi
,
J.
,
2016
,
Traumatic Brain Injuries: Animal Experiments and Numerical Simulations to Support the Development of a Brain Injury Criterion
,
Chalmers University of Technology
,
Gothenburg, Sweden
.
41.
Antona-Makoshi
,
J.
,
Davidsson
,
J.
,
Ejima
,
S.
,
Ono
,
K.
,
Brolin
,
K.
, and
Anata
,
K.
,
2013
, “
Correlation of Global Head and Brain Tissue Injury Criteria to Experimental Concussion Derived From Monkey Head Trauma Experiments
,”
IRCOBI Conference
, Gothenburg, Sweden. Sept. 11–13, pp.
509
522
.http://www.ircobi.org/wordpress/downloads/irc13/pdf_files/55.pdf
42.
Antona-Makoshi
,
J.
,
Davidsson
,
J.
,
Ejima
,
S.
, and
Ono
,
K.
,
2012
, “
Reanalysis of Monkey Head Concussion Experiment Data Using a Novel Monkey Finite Element Model to Develop Brain Tissue Injury Reference Values
,”
Proceeding of the 2012 International IRCOBI Conference on the Biomechanics of Impact
, Dublin, Ireland. Vol. 2012, No. IRC-12-54.https://www.researchgate.net/publication/286829066_Reanalysis_of_monkey_head_concussion_experiment_data_using_a_novel_monkey_finite_element_model_to_develop_brain_tissue_injury_reference_values
43.
Zhao
,
W.
, and
Ji
,
S.
,
2019
, “
Mesh Convergence Behavior and the Effect of Element Integration of a Human Head Injury Model
,”
Ann. Biomed. Eng.
,
47
(
2
), pp.
475
486
.10.1007/s10439-018-02159-z
44.
Estes
,
M.
, and
McElhaney
,
J.
,
1970
, “
Response of Brain Tissue to Compressive Loading
,”
ASME
Paper No. 70-BHF-13.https://www.worldcat.org/title/response-of-brain-tissue-of-compressive-loading/oclc/258614127
45.
McElhaney
,
J. H.
,
Melvin
,
J. W.
,
Roberts
,
V. L.
, and
Portnoy
,
H. D.
,
1973
, “
Dynamic Characteristics of the Tissues of the Head
,”
Perspectives in Biomedical Engineering
,
Springer
, Berlin, pp.
215
222
.https://www.springerprofessional.de/en/dynamic-characteristics-of-the-tissues-of-thehead/6736540
46.
Gabler
,
L. F.
,
Crandall
,
J. R.
, and
Panzer
,
M. B.
,
2016
, “
Assessment of Kinematic Brain Injury Metrics for Predicting Strain Responses in Diverse Automotive Impact Conditions
,”
Ann. Biomed. Eng.
,
44
(
12
), pp.
3705
3718
.10.1007/s10439-016-1697-0
47.
Panzer
,
M. B.
,
Myers
,
B. S.
,
Capehart
,
B. P.
, and
Bass
,
C. R.
,
2012
, “
Development of a Finite Element Model for Blast Brain Injury and the Effects of CSF Cavitation
,”
Ann. Biomed. Eng.
,
40
(
7
), pp.
1530
1544
.10.1007/s10439-012-0519-2
48.
Yanaoka
,
T.
,
Dokko
,
Y.
, and
Takahashi
,
Y.
,
2015
, “
Investigation on an Injury Criterion Related to Traumatic Brain Injury Primarily Induced by Head Rotation
,”
SAE
Paper No. 2015-01-1439.10.4271/2015-01-1439
49.
Kimpara
,
H.
,
Nakahira
,
Y.
,
Iwamoto
,
M.
,
Rowson
,
S.
, and
Duma
,
S.
,
2011
, “
Head Injury Prediction Methods Based on 6 Degree of Freedom Head Acceleration Measurements During Impact
,”
Int. J. Automot. Eng.
,
2
(
2
), pp.
13
19
.10.20485/jsaeijae.2.2_13
50.
McMurry
,
T. L.
, and
Poplin
,
G. S.
,
2015
, “
Statistical Considerations in the Development of Injury Risk Functions
,”
Traffic Inj. Prev.
,
16
(
6
), pp.
618
626
.10.1080/15389588.2014.991820
51.
Akaike
,
H.
,
1974
, “
A New Look at the Statistical Model Identification
,”
Selected Papers of Hirotugu Akaike
,
Springer
, Berlin, pp.
215
222
.
52.
Petitjean
,
A.
,
Trosseille
,
X.
,
Praxl
,
N.
,
Hynd
,
D.
, and
Irwin
,
A.
,
2012
, “
Injury Risk Curves for the WorldSID 50th Male Dummy
,”
SAE
Paper No. 2012-22-0008.https://pubmed.ncbi.nlm.nih.gov/23625565/
53.
Antona-Makoshi
,
J.
,
Mikami
,
K.
,
Lindkvist
,
M.
,
Davidsson
,
J.
, and
Schick
,
S.
,
2018
, “
Accident Analysis to Support the Development of Strategies for the Prevention of Brain Injuries in Car Crashes
,”
Accid. Anal. Prev.
,
117
, pp.
98
105
.10.1016/j.aap.2018.04.009
54.
Kleiven
,
S.
,
2007
, “
Predictors for Traumatic Brain Injuries Evaluated Through Accident Reconstructions
,”
Stapp Car Crash J.
,
51
(
81
), pp.
81
114
.10.4271/2007-22-0003
55.
Zhang
,
L.
,
Yang
,
K. H.
, and
King
,
A. I.
,
2004
, “
A Proposed Injury Threshold for Mild Traumatic Brain Injury
,”
ASME J. Biomech. Eng.
,
126
(
2
), pp.
226
236
.10.1115/1.1691446
56.
Zhao
,
W.
,
Cai
,
Y.
,
Li
,
Z.
, and
Ji
,
S.
,
2017
, “
Injury Prediction and Vulnerability Assessment Using Strain and Susceptibility Measures of the Deep White Matter
,”
Biomech. Model. Mechanobiol.
,
16
(
5
), pp.
1709
1727
.10.1007/s10237-017-0915-5
57.
Fahlstedt
,
M.
,
Abayazid
,
F.
,
Panzer
,
M. B.
,
Trotta
,
A.
,
Zhao
,
W.
,
Ghajari
,
M.
,
Gilchrist
,
M. D.
,
2021
, “
Ranking and Rating Bicycle Helmet Safety Performance in Oblique Impacts Using Eight Different Brain Injury Models
,”
Ann. Biomed. Eng.
,
49
(
3
), pp.
1097
1109
.10.1007/s10439-020-02703-w
58.
Laituri
,
T. R.
,
Henry
,
S.
,
Pline
,
K.
,
Li
,
G.
,
Frankstein
,
M.
, and
Weerappuli
,
P.
,
2016
, “
New Risk Curves for NHTSA's Brain Injury Criterion (BrIC): Derivations and Assessments
,”
SAE
Paper No. 2016-22-0012.10.4271/2016-22-0012
59.
Mueller
,
B.
,
MacAlister
,
A.
,
Nolan
,
J.
, and
Zuby
,
D.
,
2015
, “
Comparison of HIC and BRIC Head Injury Risk in IIHS Frontal Crash Tests to Real-World Head Injuries
,”
Proceedings of the 24th International Technical Conference on the Enhanced Safety of Vehicles
, Gothenburg, Sweden. Paper No. 15–0272.https://www-esv.nhtsa.dot.gov/proceedings/24/files/24ESV-000272.PDF
60.
Loftis
,
K. L.
,
Price
,
J.
, and
Gillich
,
P. J.
,
2018
, “
Evolution of the Abbreviated Injury Scale: 1990–2015
,”
Traffic Inj. Prev.
,
19
(
Suppl. 2
), pp.
S109
S113
.10.1080/15389588.2018.1512747
61.
Petchprapai
,
N.
, and
Winkelman
,
C.
,
2007
, “
Mild Traumatic Brain Injury: Determinants and Subsequent Quality of Life. A Review of the Literature
,”
J. Neurosci. Nurs.
,
39
(
5
), pp.
260
272
.10.1097/01376517-200710000-00002
62.
Eierud
,
C.
,
Craddock
,
R. C.
,
Fletcher
,
S.
,
Aulakh
,
M.
,
King-Casas
,
B.
,
Kuehl
,
D.
, and
LaConte
,
S. M.
,
2014
, “
Neuroimaging After Mild Traumatic Brain Injury: Review and Meta-Analysis
,”
NeuroImage: Clin.
,
4
, pp.
283
294
.10.1016/j.nicl.2013.12.009
63.
Broglio
,
S. P.
,
Schnebel
,
B.
,
Sosnoff
,
J. J.
,
Shin
,
S.
,
Feng
,
X.
,
He
,
X.
, and
Zimmerman
,
J.
,
2010
, “
The Biomechanical Properties of Concussions in High School Football
,”
Med. Sci. Sports Exercise
,
42
(
11
), pp.
2064
2071
.10.1249/MSS.0b013e3181dd9156
64.
Funk
,
J. R.
,
Rowson
,
S.
,
Daniel
,
R. W.
, and
Duma
,
S. M.
,
2012
, “
Validation of Concussion Risk Curves for Collegiate Football Players Derived From HITS Data
,”
Ann. Biomed. Eng.
,
40
(
1
), pp.
79
89
.10.1007/s10439-011-0400-8
65.
Funk
,
J. R.
,
Duma
,
S.
,
Manoogian
,
S.
, and
Rowson
,
S.
,
2007
, “
Biomechanical Risk Estimates for Mild Traumatic Brain Injury
,”
Annual Proceedings/Association for the Advancement of Automotive Medicine
, Melbourne, Australia, Oct. 15–17,
Association for the Advancement of Automotive Medicine
, p.
343
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3217524/
66.
Laituri
,
T. R.
,
El-Jawahri
,
R. E.
,
Henry
,
S.
, and
Sullivan
,
K.
,
2015
, “
Field-Based Assessments of Various AIS2+ Head Risk Curves for Frontal Impact
,”
SAE
Paper No. 2015-01-1437.10.4271/2015-01-1437
67.
Prasad
,
P.
,
Dalmotas
,
D.
, and
German
,
A.
,
2014
, “
An Examination of Crash and NASS Data to Evaluate the Field Relevance of IIHS Small Offset Tests
,”
SAE Int. J. Transp. Saf.
,
2
(
2
), pp.
326
335
.10.4271/2014-01-1989
68.
Giudice
,
J. S.
,
Alshareef
,
A.
,
Wu
,
T.
,
Gancayco
,
C. A.
,
Reynier
,
K. A.
,
Tustison
,
N. J.
,
Druzgal
,
T. J.
, and
Panzer
,
M. B.
,
2020
, “
An Image Registration-Based Morphing Technique for Generating Subject-Specific Brain Finite Element Models
,”
Ann. Biomed. Eng.
,
48
(
10
), pp.
2412
2424
.10.1007/s10439-020-02584-z
69.
Li
,
X.
,
Zhou
,
Z.
, and
Kleiven
,
S.
,
2020
, “
An Anatomically Detailed and Personalizable Head Injury Model: Significance of Brain and White Matter Tract Morphological Variability on Strain
,”
Biomech. Model. Mechanobiol.
,
20
(
4
), pp.
403
431
.10.1007/s10237-020-01391-8
70.
Perez-Rapela
,
D.
,
Forman
,
J. L.
,
Huddleston
,
S. H.
, and
Crandall
,
J. R.
,
2021
, “
Methodology for Vehicle Safety Development and Assessment Accounting for Occupant Response Variability to Human and Non-Human Factors
,”
Comput. Methods Biomech. Biomed. Eng.
,
24
(
4
), pp.
384
399
.10.1080/10255842.2020.1830380
71.
Guerrero
,
M.
,
Butala
,
K.
,
Tangirala
,
R.
, and
Klinkenberger
,
A.
,
2014
, “
Comparison of the THOR and Hybrid III Responses in Oblique Impacts
,”
SAE Int. J. Transp. Saf.
,
2
(
2
), pp.
279
300
.10.4271/2014-01-0559
72.
Parent
,
D.
,
Craig
,
M.
, and
Moorhouse
,
K.
,
2017
, “
Biofidelity Evaluation of the THOR and Hybrid III 50th Percentile Male Frontal Impact Anthropomorphic Test Devices
,”
SAE
Paper No. 2017-22-0009.10.4271/2017-22-0009
73.
Alshareef
,
A.
,
Giudice
,
J. S.
,
Forman
,
J.
,
Shedd
,
D. F.
,
Wu
,
T.
,
Reynier
,
K. A.
, and
Panzer
,
M. B.
,
2020
, “
Application of Trilateration and Kalman Filtering Algorithms to Track Dynamic Brain Deformation Using Sonomicrometry
,”
Biomed. Signal Process. Control
,
56
, p.
101691
.10.1016/j.bspc.2019.101691
74.
Alshareef
,
A.
,
Giudice
,
J. S.
,
Forman
,
J.
,
Salzar
,
R. S.
, and
Panzer
,
M. B.
,
2018
, “
A Novel Method for Quantifying Human In Situ Whole Brain Deformation Under Rotational Loading Using Sonomicrometry
,”
J. Neurotrauma
,
35
(
5
), pp.
780
789
.10.1089/neu.2017.5362
75.
Chan
,
D. D.
,
Knutsen
,
A. K.
,
Lu
,
Y.-C.
,
Yang
,
S. H.
,
Magrath
,
E.
,
Wang
,
W.-T.
,
Bayly
,
P. V.
,
Butman
,
J. A.
, and
Pham
,
D. L.
,
2018
, “
Statistical Characterization of Human Brain Deformation During Mild Angular Acceleration Measured In Vivo by Tagged Magnetic Resonance Imaging
,”
ASME J. Biomech. Eng.
,
140
(
10
), p.
101005
.10.1115/1.4040230
76.
Sullivan
,
S.
,
Eucker
,
S. A.
,
Gabrieli
,
D.
,
Bradfield
,
C.
,
Coats
,
B.
,
Maltese
,
M. R.
,
Lee
,
J.
,
Smith
,
C.
, and
Margulies
,
S. S.
,
2015
, “
White Matter Tract-Oriented Deformation Predicts Traumatic Axonal Brain Injury and Reveals Rotational Direction-Specific Vulnerabilities
,”
Biomech. Model. Mechanobiol.
,
14
(
4
), pp.
877
896
.10.1007/s10237-014-0643-z
77.
Hajiaghamemar
,
M.
,
Wu
,
T.
,
Panzer
,
M. B.
, and
Margulies
,
S. S.
,
2020
, “
Embedded Axonal Fiber Tracts Improve Finite Element Model Predictions of Traumatic Brain Injury
,”
Biomech. Model. Mechanobiol.
,
19
(
3
), pp.
1109
1130
.10.1007/s10237-019-01273-8
78.
Ghazi
,
K.
,
Wu
,
S.
,
Zhao
,
W.
, and
Ji
,
S.
,
2021
, “
Instantaneous Whole-Brain Strain Estimation in Dynamic Head Impact
,”
J. Neurotrauma
,
38
(
8
), pp.
1023
1035
.10.1089/neu.2020.7281
79.
Wu
,
S.
,
Zhao
,
W.
,
Ghazi
,
K.
, and
Ji
,
S.
,
2019
, “
Convolutional Neural Network for Efficient Estimation of Regional Brain Strains
,”
Sci. Rep.
,
9
(
1
), p.
17326
.10.1038/s41598-019-53551-1
You do not currently have access to this content.