Abstract

The Circle of Willis (CoW) is a redundant network of blood vessels that perfuses the brain. The ringlike anatomy mitigates the negative effects of stroke by activating collateral pathways that help maintain physiological perfusion. Previous studies have investigated the activation of these pathways during embolic stroke and internal carotid artery occlusion. However, the role of collateral pathways during cerebral vasospasm—an involuntary constriction of blood vessels after subarachnoid hemorrhage—is not well-documented. This study presents a novel technique to create patient-specific computational fluid dynamics (CFD) simulations of the Circle of Willis before and during vasospasm. Computed tomographic angiography (CTA) scans are segmented to model the vasculature, and transcranial Doppler ultrasound (TCD) measurements of blood flow velocity are applied as boundary conditions. Bayesian analysis leverages information about the uncertainty in the measurements of vessel diameters and velocities to find an optimized parameter set that satisfies mass conservation and that is applied in the final simulation. With this optimized parameter set, the diameters, velocities, and flow rates fall within typical literature values. Virtual angiograms modeled using passive scalar transport agree closely with clinical angiography. A sensitivity analysis quantifies the changes in collateral flow rates with respect to changes in the inlet and outlet flow rates. This analysis can be applied in the future to a cohort of patients to investigate the relationship between the locations and severities of vasospasm, the patient-to-patient anatomical variability in the Circle of Willis, and the activation of collateral pathways.

References

1.
Barr
,
M. L.
, and
Kiernan
,
J. A.
,
1993
,
The Human Nervous System: An Anatomical Viewpoint
,
Lippincott
,
Philadelphia, PA
.
2.
Ikram
,
A.
,
Javaid
,
M. A.
,
Ortega-Gutierrez
,
S.
,
Selim
,
M.
,
Kelangi
,
S.
,
Muhammad
,
S.
,
Anwar
,
H.
,
Torbey
,
M. T.
, and
Divani
,
A. A.
,
2021
, “
Delayed Cerebral Ischemia After Subarachnoid Hemorrhage
,”
J. Stroke Cerebrovasc. Dis.
,
30
(
11
), p.
106064
.10.1016/j.jstrokecerebrovasdis.2021.106064
3.
Findlay
,
J. M.
,
Nisar
,
J.
, and
Darsaut
,
T.
,
2016
, “
Cerebral Vasospasm: A Review
,”
Can. J. Neurol. Sci.
,
43
(
1
), pp.
15
32
.10.1017/cjn.2015.288
4.
Bang
,
O. Y.
,
Saver
,
J. L.
,
Buck
,
B. H.
,
Alger
,
J. R.
,
Starkman
,
S.
,
Ovbiagele
,
B.
,
Kim
,
D.
,
Jahan
,
R.
,
Duckwiler
,
G. R.
,
Yoon
,
S. R.
,
Vinuela
,
F.
, and
Liebeskind
,
D. S.
,
2007
, “
Impact of Collateral Flow on Tissue Fate in Acute Ischaemic Stroke
,”
J. Neurol., Neurosurg. Psychiatry
,
79
(
6
), pp.
625
629
.10.1136/jnnp.2007.132100
5.
Bozzao
,
L.
,
Fantozzi
,
L. M.
,
Bastianello
,
S.
,
Bozzao
,
A.
, and
Fieschi
,
C.
,
1989
, “
Early Collateral Blood Supply and Late Parenchymal Brain Damage in Patients With Middle Cerebral Artery Occlusion
,”
Stroke
,
20
(
6
), pp.
735
740
.10.1161/01.STR.20.6.735
6.
Lindegaard
,
K.-F.
,
Bakke
,
S. J.
,
Grolimund
,
P.
,
Aaslid
,
R.
,
Huber
,
P.
, and
Nornes
,
H.
,
1985
, “
Assessment of Intracranial Hemodynamics in Carotid Artery Disease by Transcranial Doppler Ultrasound
,”
J. Neurosurg.
,
63
(
6
), pp.
890
898
.10.3171/jns.1985.63.6.0890
7.
Schomer
,
D. F.
,
Marks
,
M. P.
,
Steinberg
,
G. K.
,
Johnstone
,
I. M.
,
Boothroyd
,
D. B.
,
Ross
,
M. R.
,
Pelc
,
N. J.
, and
Enzmann
,
D. R.
,
1994
, “
The Anatomy of the Posterior Communicating Artery as a Risk Factor for Ischemic Cerebral Infarction
,”
N. Engl. J. Med.
,
330
(
22
), pp.
1565
1570
.10.1056/NEJM199406023302204
8.
Otite
,
F.
,
Mink
,
S.
,
Tan
,
C. O.
,
Puri
,
A.
,
Zamani
,
A. A.
,
Mehregan
,
A.
,
Chou
,
S.
,
Orzell
,
S.
,
Purkayastha
,
S.
,
Du
,
R.
, and
Sorond
,
F. A.
,
2014
, “
Impaired Cerebral Autoregulation Is Associated With Vasospasm and Delayed Cerebral Ischemia in Subarachnoid Hemorrhage
,”
Stroke
,
45
(
3
), pp.
677
682
.10.1161/STROKEAHA.113.002630
9.
Grinberg
,
L.
,
Cheever
,
E.
,
Anor
,
T.
,
Madsen
,
J. R.
, and
Karniadakis
,
G. E.
,
2011
, “
Modeling Blood Flow Circulation in Intracranial Arterial Networks: A Comparative 3D/1D Simulation Study
,”
Ann. Biomed. Eng.
,
39
(
1
), pp.
297
309
.10.1007/s10439-010-0132-1
10.
Cebral
,
J. R.
,
Castro
,
M. A.
,
Soto
,
O.
,
Löhner
,
R.
, and
Alperin
,
N.
,
2003
, “
Blood-Flow Models of the Circle of Willis From Magnetic Resonance Data
,”
J. Eng. Math.
,
47
(
3/4
), pp.
369
386
.10.1023/B:ENGI.0000007977.02652.02
11.
Berg
,
P.
,
Stucht
,
D.
,
Janiga
,
G. A.
,
Beuing
,
O.
,
Speck
,
O.
, and
Thévenin
,
D.
,
2014
, “
Cerebral Blood Flow in a Healthy Circle of Willis and Two Intracranial Aneurysms: Computational Fluid Dynamics Versus Four-Dimensional Phase-Contrast Magnetic Resonance Imaging
,”
J. Biomed. Eng.
,
136
(
4
), p.
041003
.10.1115/1.4026108
12.
Zuleger
,
D. I.
,
Poulikakos
,
D.
,
Valavanis
,
A.
, and
Kollias
,
S. S.
,
2010
, “
Combining Magnetic Resonance Measurements With Numerical Simulations—Extracting Blood Flow Physiology Information Relevant to the Investigation of Intracranial Aneurysms in the Circle of Willis
,”
Int. J. Heat Fluid Flow
,
31
(
6
), pp.
1032
1039
.10.1016/j.ijheatfluidflow.2010.07.003
13.
Jou
,
L. D.
,
Lee
,
D. H.
, and
Mawad
,
M. E.
,
2010
, “
Cross-Flow at the Anterior Communicating Artery and Its Implication in Cerebral Aneurysm Formation
,”
J. Biomech.
,
43
(
11
), pp.
2189
2195
.10.1016/j.jbiomech.2010.03.039
14.
Mukherjee
,
D.
,
Jani
,
N. D.
,
Narvid
,
J.
, and
Shadden
,
S. C.
,
2018
, “
The Role of Circle of Willis Anatomy Variations in Cardio-Embolic Stroke: A Patient-Specific Simulation Based Study
,”
Ann. Biomed. Eng.
,
46
(
8
), pp.
1128
1145
.10.1007/s10439-018-2027-5
15.
Moore
,
S.
,
David
,
T.
,
Chase
,
J. G.
,
Arnold
,
J.
, and
Fink
,
J.
,
2006
, “
3D Models of Blood Flow in the Cerebral Vasculature
,”
J. Biomech.
,
39
(
8
), pp.
1454
1463
.10.1016/j.jbiomech.2005.04.005
16.
Kim
,
C. S.
,
2007
, “
Numerical Simulation of Auto-Regulation and Collateral Circulation in the Human Brain
,”
J. Mech. Sci. Technol.
,
21
(
3
), pp.
525
535
.10.1007/BF02916315
17.
Austin
,
G.
, and
Gaskell
,
R.
,
1992
, “
Quantitative Middle Cerebral Artery Flow in Normal and Vasospastic Arteries
,”
Neurol. Res.
,
14
(
2
), pp.
192
196
.10.1080/01616412.1992.11740050
18.
Pucher
,
R. K.
, and
Auer
,
L. M.
,
1988
, “
Effects of Vasospasm in the Middle Cerebral Artery Territory on Flow Velocity and Volume Flow. A Computer Simulation
,”
Acta Neurochir.
,
93
(
3–4
), pp.
123
128
.10.1007/BF01402893
19.
Chittiboina
,
P.
,
Guthikonda
,
B.
,
Wollblad
,
C.
, and
Conrad
,
S. A.
,
2011
, “
A Computational Simulation of the Effect of Hemodilution on Oxygen Transport in Middle Cerebral Artery Vasospasm
,”
J. Cereb. Blood Flow Metab.
,
31
(
11
), pp.
2209
2217
.10.1038/jcbfm.2011.83
20.
Lodi
,
C. A.
, and
Ursino
,
M.
,
1999
, “
Hemodynamic Effect of Cerebral Vasospasm in Humans: A Modeling Study
,”
Ann. Biomed. Eng.
,
27
(
2
), pp.
257
273
.10.1114/1.168
21.
Baek
,
S.
,
Valentín
,
A.
, and
Humphrey
,
J. D.
,
2007
, “
Biochemomechanics of Cerebral Vasospasm and Its Resolution: II. Constitutive Relations and Model Simulations
,”
Ann. Biomed. Eng.
,
35
(
9
), pp.
1498
1509
.10.1007/s10439-007-9322-x
22.
Shiba
,
M.
,
Ishida
,
F.
, and
Furukawa
,
K.
,
2017
, “
Computational Fluid Dynamics for Predicting Delayed Cerebral Ischemia After Subarachnoid Hemorrhage
,”
J. Neurol. Disord. Stroke
,
5
(
1
), pp.
1
4
.10.1007/s10877-018-0132-5
23.
Devault
,
K.
,
Gremaud
,
P. A.
,
Novak
,
V.
,
Olufsen
,
M. S.
,
Vernieres
,
G.
, and
Zhao
,
P.
,
2008
, “
Blood Flow in the Circle of Willis: Modeling and Calibration
,”
Multiscale Model. Simul.
,
7
(
2
), pp.
888
909
.10.1137/07070231X
24.
Ryu
,
J.
,
Ko
,
N.
,
Hu
,
X.
, and
Shadden
,
S. C.
,
2017
, “
Numerical Investigation of Vasospasm Detection by Extracranial Blood Velocity Ratios
,”
Cerebrovasc. Dis.
,
43
(
5–6
), pp.
214
222
.10.1159/000454992
25.
Bonow
,
R. H.
,
Young
,
C. C.
,
Bass
,
D. I.
,
Moore
,
A.
, and
Levitt
,
M. R.
,
2019
, “
Transcranial Doppler Ultrasonography in Neurological Surgery and Neurocritical Care
,”
Neurosurg. Focus
,
47
(
6
), pp.
E2
–E
8
.10.3171/2019.9.FOCUS19611
26.
Aaslid
,
R.
,
1986
, “
Transcranial Doppler Examination Techniques
,”
Transcranial Doppler Sonography
,
Springer
Vienna
, Austria. 10.1007/978-3-7091-8864-4_4
27.
Ambarki
,
K.
,
Hallberg
,
P.
,
Jóhannesson
,
G.
,
Lindén
,
C.
,
Zarrinkoob
,
L.
,
Wåhlin
,
A.
,
Birgander
,
R.
,
Malm
,
J.
, and
Eklund
,
A.
,
2013
, “
Blood Flow of Ophthalmic Artery in Healthy Individuals Determined by Phase-Contrast Magnetic Resonance Imaging
,”
Invest. Ophthalmol. Visual Sci.
,
54
(
4
), pp.
2738
2745
.10.1167/iovs.13-11737
28.
Nagasawa
,
S.
,
Kawanishi
,
M.
,
Tada
,
Y.
,
Kawabata
,
S.
, and
Ohta
,
T.
,
2000
, “
Intra-Operative Measurement of Cortical Arterial Flow Volumes in Posterior Circulation Using Doppler Sonography
,”
Neurol. Res.
,
22
(
2
), pp.
194
196
.10.1080/01616412.2000.11741060
29.
Womersley
,
J. R.
,
1955
, “
Method for the Calculation of Velocity, Rate of Flow and Viscous Drag in Arteries When the Pressure Gradient Is Known
,”
J. Physiol.
,
127
(
3
), pp.
553
563
.10.1113/jphysiol.1955.sp005276
30.
El-Barhoun
,
E. N.
,
Gledhill
,
S. R.
, and
Pitman
,
A. G.
,
2009
, “
Circle of Willis Artery Diameters on MR Angiography: An Australian Reference Database
,”
J. Med. Imaging Radiat. Oncol.
,
53
(
3
), pp.
248
260
.10.1111/j.1754-9485.2009.02056.x
31.
Gabrielsen
,
T. O.
, and
Greitz
,
T.
,
1970
, “
Normal Size of the Internal Carotid, Middle Cerebral and Anterior Cerebral Arteries
,”
Acta Radiol.
,
10
(
1
), pp.
1
10
.10.1177/028418517001000101
32.
Gomes
,
F. B.
,
Dujovny
,
M.
,
Umansky
,
F.
,
Berman
,
S. K.
,
Diaz
,
F. G.
,
Ausman
,
J. I.
,
Mirchandani
,
H. G.
, and
Ray
,
W. J.
,
1986
, “
Microanatomy of the Anterior Cerebral Artery
,”
Surg. Neurol.
,
26
(
2
), pp.
129
141
.10.1016/0090-3019(86)90365-4
33.
Kamath
,
S.
,
1981
, “
Observations on the Length and Diameter of Vessels Forming the Circle of Willis
,”
J. Anat.
,
133
(
Pt 3
), pp.
419
423
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1167613/
34.
Karatas
,
A.
,
Coban
,
G.
,
Cinar
,
C.
,
Oran
,
I.
, and
Uz
,
A.
,
2015
, “
Assessment of the Circle of Willis With Cranial Tomography Angiography
,”
Med. Sci. Monit.
,
21
, pp.
2647
2652
.10.12659/MSM.894322
35.
Krabbe-Hartkamp
,
M. J.
,
van der Grond
,
J.
,
de Leeuw
,
F. E.
,
de Groot
,
J. C.
,
Algra
,
A.
,
Hillen
,
B.
,
Breteler
,
M. M.
, and
Mali
,
W. P.
,
1998
, “
Circle of Willis: Morphologic Variation on Three-Dimensional Time-of-Flight MR Angiograms
,”
Radiology
,
207
(
1
), pp.
103
111
.10.1148/radiology.207.1.9530305
36.
Maaly
,
M. A.
, and
Ismail
,
A. A.
,
2011
, “
Three Dimensional Magnetic Resonance Angiography of the Circle of Willis: Anatomical Variations in General Egyptian Population
,”
Egypt. J. Radiol. Nucl. Med.
,
42
(
3–4
), pp.
405
412
.10.1016/j.ejrnm.2011.09.001
37.
Müller
,
H. R.
,
Brunhölzl
,
C.
,
Radü
,
E. W.
, and
Buser
,
M.
,
1991
, “
Sex and Side Differences of Cerebral Arterial Caliber
,”
Neuroradiology
,
33
(
3
), pp.
212
216
.10.1007/BF00588220
38.
Radu
,
E. W.
, and
Du Boulay
,
G. H.
,
1976
, “
Paradoxical Dilatation of the Large Cerebral Arteries in Hypocapnia in Man
,”
Stroke
,
7
(
6
), pp.
569
572
.10.1161/01.STR.7.6.569
39.
Stefani
,
M. A.
,
Schneider
,
F. L.
,
Antonio
,
C.
,
Marrone
,
H.
, and
Severino
,
A. G.
,
2013
, “
Influence of the Gender on Cerebral Vascular Diameters Observed During the Magnetic Resonance Angiographic Examination of Willis Circle
,”
Braz. Arch. Biol. Technol.
,
56
(
1
), pp.
45
52
.10.1590/S1516-89132013000100006
40.
Aaslid
,
R.
,
Markwalder
,
T. M.
, and
Nornes
,
H.
,
1982
, “
Noninvasive Transcranial Doppler Ultrasound Recording of Flow Velocity in Basal Cerebral Arteries
,”
J. Neurosurg.
,
57
(
6
), pp.
769
774
.10.3171/jns.1982.57.6.0769
41.
Grolimund
,
P.
, and
Seiler
,
R. W.
,
1988
, “
Age Dependence of the Flow Velocity in the Basal Cerebral Arteries—A Transcranial Doppler Ultrasound Study
,”
Ultrasound Med. Biol.
,
14
(
3
), pp.
191
198
.10.1016/0301-5629(88)90139-1
42.
Hennerici
,
M.
,
Rautenberg
,
W.
,
Sitzer
,
G.
, and
Schwartz
,
A.
,
1987
, “
Transcranial Doppler Ultrasound for the Assessment of Intracranial Arterial Flow Velocity—Part 1. Examination Technique and Normal Values
,”
Surg. Neurol.
,
27
(
5
), pp.
439
448
.10.1016/0090-3019(87)90251-5
43.
Martin
,
P. J.
,
Evans
,
D. H.
, and
Naylor
,
A. R.
,
1994
, “
Transcranial Color-Coded Sonography of the Basal Cerebral Circulation. Reference Data From 115 Volunteers
,”
Stroke
,
25
(
2
), pp.
390
396
.10.1161/01.STR.25.2.390
44.
Müller
,
M.
, and
Schimrigk
,
K.
,
1994
, “
A Comparative Assessment of Cerebral Haemodynamics in the Basilar Artery and Carotid Territory by Transcranial Doppler Sonography in Normal Subjects
,”
Ultrasound Med. Biol.
,
20
(
8
), pp.
677
687
.10.1016/0301-5629(94)90025-6
45.
Ringelstein
,
E. B.
,
Kahlscheuer
,
B.
,
Niggemeyer
,
E.
, and
Otis
,
S. M.
,
1990
, “
Transcranial Doppler Sonography: Anatomical Landmarks and Normal Velocity Values
,”
Ultrasound Med. Biol.
,
16
(
8
), pp.
745
761
.10.1016/0301-5629(90)90039-F
46.
Schöoning
,
M.
,
Buchholz
,
R.
, and
Walter
,
J.
,
1993
, “
Comparative Study of Transcranial Color Duplex Sonography and Transcranial Doppler Sonography in Adults
,”
J. Neurosurg.
,
78
(
5
), pp.
776
784
.10.3171/jns.1993.78.5.0776
47.
Sorteberg
,
W.
,
Langmoen
,
I. A.
,
Lindegaard
,
K. F.
, and
Nornes
,
H.
,
1990
, “
Side-to-Side Differences and Day-to-Day Variations of Transcranial Doppler Parameters in Normal Subjects
,”
J. Ultrasound Med.
,
9
(
7
), pp.
403
409
.10.7863/jum.1990.9.7.403
48.
Amin-Hanjani
,
S.
,
Du
,
X.
,
Pandey
,
D. K.
,
Thulborn
,
K. R.
, and
Charbel
,
F. T.
,
2015
, “
Effect of Age and Vascular Anatomy on Blood Flow in Major Cerebral Vessels
,”
J. Cereb. Blood Flow Metab.
,
35
(
2
), pp.
312
318
.10.1038/jcbfm.2014.203
49.
Buijs
,
P. C.
,
Krabbe-Hartkamp
,
M. J.
,
Bakker
,
C. J.
,
De Lange
,
E. E.
,
Ramos
,
L. M.
,
Breteler
,
M. M.
, and
Mali
,
W. P.
,
1998
, “
Effect of Age on Cerebral Blood Flow: Measurement With Ungated Two-Dimensional Phase-Contrast MR Angiography in 250 Adults
,”
Radiology
,
209
(
3
), pp.
667
674
.10.1148/radiology.209.3.9844657
50.
Ford
,
M. D.
,
Alperin
,
N.
,
Lee
,
S. H.
,
Holdsworth
,
D. W.
, and
Steinman
,
D. A.
,
2005
, “
Characterization of Volumetric Flow Rate Waveforms in the Normal Internal Carotid and Vertebral Arteries
,”
Physiol. Meas.
,
26
(
4
), pp.
477
488
.10.1088/0967-3334/26/4/013
51.
Hendrikse
,
J.
,
Fleur van Raamt
,
A.
,
van der Graaf
,
Y.
,
Mali
,
W. P.
, and
van der Grond
,
J.
,
2005
, “
Distribution of Cerebral Blood Flow in the Circle of Willis
,”
Radiology
,
235
(
1
), pp.
184
189
.10.1148/radiol.2351031799
52.
MacDonald
,
M. E.
, and
Frayne
,
R.
,
2015
, “
Phase Contrast MR Imaging Measurements of Blood Flow in Healthy Human Cerebral Vessel Segments
,”
Physiol. Meas.
,
36
(
7
), pp.
1517
1527
.10.1088/0967-3334/36/7/1517
53.
Tanaka
,
H.
,
Fujita
,
N.
,
Enoki
,
T.
,
Matsumoto
,
K.
,
Watanabe
,
Y.
,
Murase
,
K.
, and
Nakamura
,
H.
,
2006
, “
Relationship Between Variations in the Circle of Willis and Flow Rates in Internal Carotid and Basilar Arteries Determined by Means of Magnetic Resonance Imaging With Semiautomated Lumen Segmentation: Reference Data From 125 Healthy Volunteers
,”
Am. J. Neuroradiology
,
27
(
8
), pp.
1770
1775
.http://www.ajnr.org/content/27/8/1770
54.
Wåhlin
,
A.
,
Ambarki
,
K.
,
Hauksson
,
J.
,
Birgander
,
R.
,
Malm
,
J.
, and
Eklund
,
A.
,
2012
, “
Phase Contrast MRI Quantification of Pulsatile Volumes of Brain Arteries, Veins, and Cerebrospinal Fluids Compartments: Repeatability and Physiological Interactions
,”
J. Magn. Reson. Imaging
,
35
(
5
), pp.
1055
1062
.10.1002/jmri.23527
55.
Zarrinkoob
,
L.
,
Ambarki
,
K.
,
Wåhlin
,
A.
,
Birgander
,
R.
,
Eklund
,
A.
, and
Malm
,
J.
,
2015
, “
Blood Flow Distribution in Cerebral Arteries
,”
J. Cereb. Blood Flow Metab.
,
35
(
4
), pp.
648
654
.10.1038/jcbfm.2014.241
56.
Zhao
,
M.
,
Amin-Hanjani
,
S.
,
Ruland
,
S.
,
Curcio
,
A. P.
,
Ostergren
,
L.
, and
Charbel
,
F. T.
,
2007
, “
Regional Cerebral Blood Flow Using Quantitative MR Angiography
,”
Am. J. Neuroradiology
,
28
(
8
), pp.
1470
1473
.10.3174/ajnr.A0582
57.
Ring
,
B. A.
, and
Waddington
,
M. M.
,
1967
, “
Intraluminal Diameters of the Intracranial Diameters
,”
Vasc. Surg.
,
1
(
3
), pp.
137
151
.10.1177/153857446700100301
58.
Michalinos
,
A.
,
Zogana
,
S.
,
Kotsiomitis
,
E.
,
Mazarakis
,
A.
, and
Troupis
,
T.
,
2015
, “
Anatomy of the Ophthalmic Artery: A Review Concerning Its Modern Surgical and Clinical Applications
,”
Anat. Res. Int.
,
2015
, p.
591961
.10.1155/2015/591961
59.
McGah
,
P. M.
,
Levitt
,
M. R.
,
Barbour
,
M. C.
,
Morton
,
R. P.
,
Nerva
,
J. D.
,
Mourad
,
P. D.
,
Ghodke
,
B. V.
,
Hallam
,
D. K.
,
Sekhar
,
L. N.
,
Kim
,
L. J.
, and
Aliseda
,
A.
,
2014
, “
Accuracy of Computational Cerebral Aneurysm Hemodynamics Using Patient-Specific Endovascular Measurements
,”
Ann. Biomed. Eng.
,
42
(
3
), pp.
503
514
.10.1007/s10439-013-0930-3
60.
Demchuk
,
A. M.
,
Christou
,
I.
,
Wein
,
T. H.
,
Felberg
,
R. A.
,
Malkoff
,
M.
,
Grotta
,
J. C.
, and
Alexandrov
,
A. V.
,
2000
, “
Specific Transcranial Doppler Flow Findings Related to the Presence and Site of Arterial Occlusion
,”
Stroke
,
31
(
1
), pp.
140
146
.10.1161/01.STR.31.1.140
61.
Reinhard
,
M.
,
Müller
,
T.
,
Guschlbauer
,
B.
,
Timmer
,
J.
, and
Hetzel
,
A.
,
2003
, “
Dynamic Cerebral Autoregulation and Collateral Flow Patterns in Patients With Severe Carotid Stenosis or Occlusion
,”
Ultrasound Med. Biol.
,
29
(
8
), pp.
1105
1113
.10.1016/S0301-5629(03)00954-2
62.
Krejza
,
J.
,
Rudzinski
,
W.
,
Pawlak
,
M. A.
,
Tomaszewski
,
M.
,
Ichord
,
R.
,
Kwiatkowski
,
J.
,
Gor
,
D.
, and
Melhem
,
E. R.
,
2007
, “
Angle-Corrected Imaging Transcranial Doppler Sonography Versus Imaging and Nonimaging Transcranial Doppler Sonography in Children With Sickle Cell Disease
,”
Am. J. Neuroradiology
,
28
(
8
), pp.
1613
1618
.10.3174/ajnr.A0591
63.
Bisschops
,
R. H. C.
,
Klijn
,
C. J. M.
,
Kappelle
,
L. J.
,
van Huffelen
,
A. C.
, and van der
Grond
,
J.
,
2003
, “
Collateral Flow and Ischemic Brain Lesions in Patients With Unilateral Carotid Artery Occlusion
,”
Neurology
,
60
(
9
), pp.
1435
1441
.10.1212/01.WNL.0000061616.96745.90
64.
Christoforidis
,
G. A.
,
Mohammad
,
Y.
,
Kehagias
,
D.
,
Avutu
,
B.
, and
Slivka
,
A. P.
,
2005
, “
Angiographic Assessment of Pial Collaterals as a Prognostic Indicator Following Intra-Arterial Thrombolysis for Acute Ischemic Stroke
,”
Am. J. Neuroradiology
,
26
, pp.
1789
1797
.http://www.ajnr.org/content/26/7/1789
You do not currently have access to this content.