Abstract

Here, we report computational studies of bidirectional transport in an axon, specifically focusing on predictions when the retrograde motor becomes dysfunctional. We are motivated by reports that mutations in dynein-encoding genes can cause diseases associated with peripheral motor and sensory neurons, such as type 2O Charcot-Marie-Tooth disease. We use two different models to simulate bidirectional transport in an axon: an anterograde-retrograde model, which neglects passive transport by diffusion in the cytosol, and a full slow transport model, which includes passive transport by diffusion in the cytosol. As dynein is a retrograde motor, its dysfunction should not directly influence anterograde transport. However, our modeling results unexpectedly predict that slow axonal transport fails to transport cargos against their concentration gradient without dynein. The reason is the lack of a physical mechanism for the reverse information flow from the axon terminal, which is required so that the cargo concentration at the terminal could influence the cargo concentration distribution in the axon. Mathematically speaking, to achieve a prescribed concentration at the terminal, equations governing cargo transport must allow for the imposition of a boundary condition postulating the cargo concentration at the terminal. Perturbation analysis for the case when the retrograde motor velocity becomes close to zero predicts uniform cargo distributions along the axon. The obtained results explain why slow axonal transport must be bidirectional to allow for the maintenance of concentration gradients along the axon length. Our result is limited to small cargo diffusivity, which is a reasonable assumption for many slow axonal transport cargos (such as cytosolic and cytoskeletal proteins, neurofilaments, actin, and microtubules) which are transported as large multiprotein complexes or polymers.

References

1.
Goldstein
,
L. S. B.
, and
Yang
,
Z. H.
,
2000
, “
Microtubule-Based Transport Systems in Neurons: The Roles of Kinesins and Dyneins
,”
Annu. Rev. Neurosci.
,
23
(
1
), pp.
39
71
.10.1146/annurev.neuro.23.1.39
2.
Hanemann
,
C.
, and
Ludolph
,
A.
,
2005
, “
Motor Protein Diseases of the Nervous System
,”
Amyotrophic Lateral Scler. Other Mot. Neuron Disord.
,
6
(
4
), pp.
197
201
.10.1080/14660820510035360
3.
Liu
,
X.
,
Rizzo
,
V.
, and
Puthanveettil
,
S. V.
,
2012
, “
Pathologies of Axonal Transport in Neurodegenerative Diseases
,”
Transl. Neurosci.
,
3
(
4
), pp.
355
372
.10.2478/s13380-012-0044-7
4.
Brady
,
S. T.
, and
Morfini
,
G. A.
,
2017
, “
Regulation of Motor Proteins, Axonal Transport Deficits and Adult-Onset Neurodegenerative Diseases
,”
Neurobiol. Dis.
,
105
, pp.
273
282
.10.1016/j.nbd.2017.04.010
5.
Markworth
,
R.
,
Bähr
,
M.
, and
Burk
,
K.
,
2021
, “
Held Up in Traffic-Defects in the Trafficking Machinery in Charcot-Marie-Tooth Disease
,”
Front. Mol. Neurosci.
,
14
, p.
695294
.10.3389/fnmol.2021.695294
6.
Chen
,
X.-J.
,
Xu
,
H.
,
Cooper
,
H. M.
, and
Liu
,
Y.
,
2014
, “
Cytoplasmic Dynein: A Key Player in Neurodegenerative and Neurodevelopmental Diseases
,”
Sci. China-Life Sci.
,
57
(
4
), pp.
372
377
.10.1007/s11427-014-4639-9
7.
Eschbach
,
J.
,
Sinniger
,
J.
,
Bouitbir
,
J.
,
Fergani
,
A.
,
Schlagowski
,
A.-I.
,
Zoll
,
J.
,
Geny
,
B.
, et al.,
2013
, “
Dynein Mutations Associated With Hereditary Motor Neuropathies Impair Mitochondrial Morphology and Function With Age
,”
Neurobiol. Dis.
,
58
, pp.
220
230
.10.1016/j.nbd.2013.05.015
8.
Nandini
,
S.
,
Conley Calderon
,
J. L.
,
Sabblah
,
T. T.
,
Love
,
R.
,
King
,
L. E.
, and
King
,
S. J.
,
2019
, “
Mice With an Autosomal Dominant Charcot-Marie-Tooth Type 2O Disease Mutation in Both Dynein Alleles Display Severe Moto-Sensory Phenotypes
,”
Sci. Rep.
,
9
(
1
), p.
11979
.10.1038/s41598-019-48431-7
9.
Marzo
,
M. G.
,
Griswold
,
J. M.
,
Ruff
,
K. M.
,
Buchmeier
,
R. E.
,
Fees
,
C. P.
, and
Markus
,
S. M.
,
2019
, “
Molecular Basis for Dyneinopathies Reveals Insight Into Dynein Regulation and Dysfunction
,”
Elife
,
8
, p.
e47246
.10.7554/eLife.47246
10.
Brown
,
A.
,
2016
, “
Axonal Transport
,”
Neuroscience in the 21st Century
,
D.
Pfaff
and
N.
Volkow
, eds.,
Springer
, p. 333–
379
.
11.
Ally
,
S.
,
Larson
,
A. G.
,
Barlan
,
K.
,
Rice
,
S. E.
, and
Gelfand
,
V. I.
,
2009
, “
Opposite-Polarity Motors Activate One Another to Trigger Cargo Transport in Live Cells
,”
J. Cell Biol.
,
187
(
7
), pp.
1071
1082
.10.1083/jcb.200908075
12.
Kuznetsov
,
I. A.
, and
Kuznetsov
,
A. V.
,
2022
, “
Bidirectional, Unlike Unidirectional Transport, Allows Transporting Axonal Cargos Against Their Concentration Gradient
,”
J. Theor. Biol.
,
546
, p.
111161
.10.1016/j.jtbi.2022.111161
13.
Roy
,
S.
,
Winton
,
M. J.
,
Black
,
M. M.
,
Trojanowski
,
J. Q.
, and
Lee
,
V. M.-Y.
,
2008
, “
Cytoskeletal Requirements in Axonal Transport of Slow Component-B
,”
J. Neurosci.
,
28
(
20
), pp.
5248
5256
.10.1523/JNEUROSCI.0309-08.2008
14.
Wang
,
L.
,
Ho
,
C.-L.
,
Sun
,
D.
,
Liem
,
R. K.
, and
Brown
,
A.
,
2000
, “
Rapid Movement of Axonal Neurofilaments Interrupted by Prolonged Pauses
,”
Nat. Cell Biol.
,
2
(
3
), pp.
137
141
.10.1038/35004008
15.
Roy
,
S.
,
Coffee
,
P.
,
Smith
,
G.
,
Liem
,
R. K. H.
,
Brady
,
S. T.
, and
Black
,
M. M.
,
2000
, “
Neurofilaments Are Transported Rapidly but Intermittently in Axons: Implications for Slow Axonal Transport
,”
J. Neurosci.
,
20
(
18
), pp.
6849
6861
.10.1523/JNEUROSCI.20-18-06849.2000
16.
Müller
,
M. J. I.
,
Klumpp
,
S.
, and
Lipowsky
,
R.
,
2008
, “
Tug-of-War as a Cooperative Mechanism for Bidirectional Cargo Transport by Molecular Motors
,”
Proc. Natl. Acad. Sci. USA.
,
105
(
12
), pp.
4609
4614
.10.1073/pnas.0706825105
17.
Hancock
,
W. O.
,
2014
, “
Bidirectional Cargo Transport: Moving Beyond Tug of War
,”
Nat. Rev. Mol. Cell Biol.
,
15
(
9
), pp.
615
628
.10.1038/nrm3853
18.
Charvin
,
D.
,
Medori
,
R.
,
Hauser
,
R. A.
, and
Rascol
,
O.
,
2018
, “
Therapeutic Strategies for Parkinson Disease: Beyond Dopaminergic Drugs
,”
Nat. Rev. Drug Discovery
,
17
(
11
), pp.
804
822
.10.1038/nrd.2018.136
19.
Shahmoradian
,
S. H.
,
Lewis
,
A. J.
,
Genoud
,
C.
,
Hench
,
J.
,
Moors
,
T. E.
,
Navarro
,
P. P.
,
Castaño-Díez
,
D.
, et al.,
2019
, “
Lewy Pathology in Parkinson's Disease Consists of Crowded Organelles and Lipid Membranes
,”
Nat. Neurosci.
,
22
(
7
), pp.
1099
1109
.10.1038/s41593-019-0423-2
20.
Jensen
,
P. H.
,
Nielsen
,
M. S.
,
Jakes
,
R.
,
Dotti
,
C. G.
, and
Goedert
,
M.
,
1998
, “
Binding of Alpha-Synuclein to Brain Vesicles is Abolished by Familial Parkinson's Disease Mutation
,”
J. Biol. Chem.
,
273
(
41
), pp.
26292
26294
.10.1074/jbc.273.41.26292
21.
Jensen
,
P. H.
,
Li
,
J.-Y.
,
Dahlström
,
A.
, and
Dotti
,
C. G.
,
1999
, “
Axonal Transport of Synucleins is Mediated by All Rate Components
,”
Eur. J. Neurosci.
,
11
(
10
), pp.
3369
3376
.10.1046/j.1460-9568.1999.00754.x
22.
Yang
,
M.-L.
,
Hasadsri
,
L.
,
Woods
,
W. S.
, and
George
,
J. M.
,
2010
, “
Dynamic Transport and Localization of Alpha-Synuclein in Primary Hippocampal Neurons
,”
Mol. Neurodegener.
,
5
(
1
), p.
9
.10.1186/1750-1326-5-9
23.
Tang
,
Y.
,
Das
,
U.
,
Scott
,
D. A.
, and
Roy
,
S.
,
2012
, “
The Slow Axonal Transport of Alpha-Synuclein-Mechanistic Commonalities Amongst Diverse Cytosolic Cargoes
,”
Cytoskeleton
,
69
(
7
), pp.
506
513
.10.1002/cm.21019
24.
Lashuel
,
H. A.
,
Overk
,
C. R.
,
Oueslati
,
A.
, and
Masliah
,
E.
,
2013
, “
The Many Faces of Alpha-Synuclein: From Structure and Toxicity to Therapeutic Target
,”
Nat. Rev. Neurosci.
,
14
(
1
), pp.
38
48
.10.1038/nrn3406
25.
Utton
,
M. A.
,
Noble
,
W. J.
,
Hill
,
J. E.
,
Anderton
,
B. H.
, and
Hanger
,
D. P.
,
2005
, “
Molecular Motors Implicated in the Axonal Transport of Tau and Alpha-Synuclein
,”
J. Cell Sci.
,
118
(
20
), pp.
4645
4654
.10.1242/jcs.02558
26.
Nath
,
S.
,
Meuvis
,
J.
,
Hendrix
,
J.
,
Carl
,
S. A.
, and
Engelborghs
,
Y.
,
2010
, “
Early Aggregation Steps in Alpha-Synuclein as Measured by FCS and FRET: Evidence for a Contagious Conformational Change
,”
Biophys. J.
,
98
(
7
), pp.
1302
1311
.10.1016/j.bpj.2009.12.4290
27.
Hannestad
,
J. K.
,
Rocha
,
S.
,
Agnarsson
,
B.
,
Zhdanov
,
V. P.
,
Wittung-Stafshede
,
P.
, and
Höök
,
F.
,
2020
, “
Single-Vesicle Imaging Reveals Lipid-Selective and Stepwise Membrane Disruption by Monomeric Alpha-Synuclein
,”
Proc. Natl. Acad. Sci. USA
,
117
(
25
), pp.
14178
14186
.10.1073/pnas.1914670117
28.
Banks
,
S. M. L.
,
Medeiros
,
A. T.
,
McQuillan
,
M.
,
Busch
,
D. J.
,
Ibarraran-Viniegra
,
A. S.
,
Sousa
,
R.
,
Lafer
,
E. M.
, and
Morgan
,
J. R.
,
2020
, “
Hsc70 Ameliorates the Vesicle Recycling Defects Caused by Excess Alpha-Synuclein at Synapses
,”
eNeuro
,
7
(
1
), pp. 1–18.10.1523/ENEURO.0448-19.2020
29.
Bennett
,
M. C.
,
Bishop
,
J. F.
,
Leng
,
Y.
,
Chock
,
P. B.
,
Chase
,
T. N.
, and
Mouradian
,
M. M.
,
1999
, “
Degradation of Alpha-Synuclein by Proteasome
,”
J. Biol. Chem.
,
274
(
48
), pp.
33855
33858
.10.1074/jbc.274.48.33855
30.
Schapira
,
A. H. V.
,
Lang
,
A. E. T.
, and
Fahn
,
S.
,
2010
,
Movement Disorders 4: Blue Books of Neurology Series
, Vol.,
35
,
Saunders
,
Philadelphia, PA
.
31.
George
,
J.
,
Mok
,
S.
,
Moses
,
D.
,
Wilkins
,
S.
,
Bush
,
A.
,
Cherny
,
R.
, and
Finkelstein
,
D.
,
2009
, “
Targeting the Progression of Parkinson's Disease
,”
Curr. Neuropharmacol.
,
7
(
1
), pp.
9
36
.10.2174/157015909787602814
32.
Gupta
,
A.
, and
Dawson
,
T. M.
,
2010
, “
Chapter 10 - Pathogenesis of Parkinson's Disease
,”
Blue Books Neurol.
,
34
, pp.
155
169
.10.1016/B978-1-4160-6641-5.00010-6
33.
Toba
,
S.
,
Jin
,
M.
,
Yamada
,
M.
,
Kumamoto
,
K.
,
Matsumoto
,
S.
,
Yasunaga
,
T.
,
Fukunaga
,
Y.
, et al.,
2017
, “
Alpha-Synuclein Facilitates to Form Short Unconventional Microtubules That Have a Unique Function in the Axonal Transport
,”
Sci. Rep.
,
7
(
1
), p.
16386
.10.1038/s41598-017-15575-3
34.
Saha
,
A. R.
,
Hill
,
J.
,
Utton
,
M. A.
,
Asuni
,
A. A.
,
Ackerley
,
S.
,
Grierson
,
A. J.
,
Miller
,
C. C.
, et al.,
2004
, “
Parkinson's Disease Alpha-Synuclein Mutations Exhibit Defective Axonal Transport in Cultured Neurons
,”
J. Cell Sci.
,
117
(
7
), pp.
1017
1024
.10.1242/jcs.00967
35.
Iyer
,
A.
, and
Claessens
,
M. M. A. E.
,
2019
, “
Disruptive Membrane Interactions of Alpha-Synuclein Aggregates
,”
Biochim. Biophys. Acta, Proteins Proteomics
,
1867
(
5
), pp.
468
482
.10.1016/j.bbapap.2018.10.006
36.
Goldberg
,
A.
,
2003
, “
Protein Degradation and Protection Against Misfolded or Damaged Proteins
,”
Nature
,
426
(
6968
), pp.
895
899
.10.1038/nature02263
37.
Kim
,
C.
, and
Lee
,
S.
,
2008
, “
Controlling the Mass Action of Alpha-Synuclein in Parkinson's Disease
,”
J. Neurochemistry
,
107
(
2
), pp.
303
316
.10.1111/j.1471-4159.2008.05612.x
38.
Jung
,
P.
, and
Brown
,
A.
,
2009
, “
Modeling the Slowing of Neurofilament Transport Along the Mouse Sciatic Nerve
,”
Phys. Biol.
,
6
(
4
), p.
046002
.10.1088/1478-3975/6/4/046002
39.
Kuznetsov
,
A. V.
,
Avramenko
,
A. A.
, and
Blinov
,
D. G.
,
2009
, “
Effect of Protein Degradation in the Axon on the Speed of the Bell-Shaped Concentration Wave in Slow Axonal Transport
,”
Int. Commun. Heat Mass Transfer
,
36
(
7
), pp.
641
645
.10.1016/j.icheatmasstransfer.2009.04.002
40.
Kuznetsov
,
A. V.
,
Avramenko
,
A. A.
, and
Blinov
,
D. G.
,
2009
, “
Macroscopic Modeling of Slow Axonal Transport of Rapidly Diffusible Soluble Proteins
,”
Int. Commun. Heat Mass Transfer
,
36
(
4
), pp.
293
296
.10.1016/j.icheatmasstransfer.2009.01.005
41.
Roy
,
S.
,
2014
, “
Seeing the Unseen: The Hidden World of Slow Axonal Transport
,”
Neuroscientist
,
20
(
1
), pp.
71
81
.10.1177/1073858413498306
42.
Raichur
,
A.
,
Vali
,
S.
, and
Gorin
,
F.
,
2006
, “
Dynamic Modeling of Alpha-Synuclein Aggregation for the Sporadic and Genetic Forms of Parkinson's Disease
,”
Neurosci.
,
142
(
3
), pp.
859
870
.10.1016/j.neuroscience.2006.06.052
43.
Li
,
W.
,
Hoffman
,
P. N.
,
Stirling
,
W.
,
Price
,
D. L.
, and
Lee
,
M. K.
,
2003
, “
Axonal Transport of Human Alpha-Synuclein Slows With Aging but is Not Affected by Familial Parkinson's Disease-Linked Mutations
,”
J. Neurochem.
,
88
(
2
), pp.
401
410
.10.1046/j.1471-4159.2003.02166.x
44.
Rosenberg
,
T.
,
Gal-Ben-Ari
,
S.
,
Dieterich
,
D. C.
,
Kreutz
,
M. R.
,
Ziv
,
N. E.
,
Gundelfinger
,
E. D.
, and
Rosenblum
,
K.
,
2014
, “
The Roles of Protein Expression in Synaptic Plasticity and Memory Consolidation
,”
Front. Mol. Neurosci.
,
7
, p.
86
.10.3389/fnmol.2014.00086
45.
Kuznetsov
,
I. A.
, and
Kuznetsov
,
A. V.
,
2015
, “
A Comparison Between the Diffusion-Reaction and Slow Axonal Transport Models for Predicting Tau Distribution Along an Axon
,”
Math. Med. Biol.
,
32
(
3
), pp.
263
283
.10.1093/imammb/dqu003
46.
Yan
,
Y.
, and
Brown
,
A.
,
2005
, “
Neurofilament Polymer Transport in Axons
,”
J. Neurosci.
,
25
(
30
), pp.
7014
7021
.10.1523/JNEUROSCI.2001-05.2005
47.
Maday
,
S.
,
Twelvetrees
,
A. E.
,
Moughamian
,
A. J.
, and
Holzbaur
,
E. L.
,
2014
, “
Axonal Transport: Cargo-Specific Mechanisms of Motility and Regulation
,”
Neuron
,
84
(
2
), pp.
292
309
.10.1016/j.neuron.2014.10.019
48.
Roy
,
S.
,
Winton
,
M. J.
,
Black
,
M. M.
,
Trojanowski
,
J. Q.
, and
Lee
,
V. M.-Y.
,
2007
, “
Rapid and Intermittent Cotransport of Slow Component-B Proteins
,”
J. Neurosci.
,
27
(
12
), pp.
3131
3138
.10.1523/JNEUROSCI.4999-06.2007
49.
Scott
,
D. A.
,
Das
,
U.
,
Tang
,
Y.
, and
Roy
,
S.
,
2011
, “
Mechanistic Logic Underlying the Axonal Transport of Cytosolic Proteins
,”
Neuron
,
70
(
3
), pp.
441
454
.10.1016/j.neuron.2011.03.022
50.
Roy
,
S.
,
2020
, “
Finding Order in Slow Axonal Transport
,”
Curr. Opin. Neurobiol.
,
63
, pp.
87
94
.10.1016/j.conb.2020.03.015
51.
Beck
,
J. V.
, and
Arnold
,
K. J.
,
1977
,
Parameter Estimation in Science and Engineering
,
Wiley
,
New York
.
52.
Zadeh
,
K. S.
, and
Montas
,
H. J.
,
2010
, “
A Class of Exact Solutions for Biomacromolecule Diffusion-Reaction in Live Cells
,”
J. Theor. Biol.
,
264
(
3
), pp.
914
933
.10.1016/j.jtbi.2010.03.028
53.
Zi
,
Z.
,
2011
, “
Sensitivity Analysis Approaches Applied to Systems Biology Models
,”
IET Syst. Biol.
,
5
(
6
), pp.
336
346
.10.1049/iet-syb.2011.0015
54.
Kuznetsov
,
I. A.
, and
Kuznetsov
,
A. V.
,
2019
, “
Investigating Sensitivity Coefficients Characterizing the Response of a Model of Tau Protein Transport in an Axon to Model Parameters
,”
Comput. Methods Biomech. Biomed. Eng.
,
22
(
1
), pp.
71
83
.10.1080/10255842.2018.1534233
55.
Kacser
,
H.
,
Burns
,
J. A.
,
Kacser
,
H.
, and
Fell
,
D. A.
,
1995
, “
The Control of Flux
,”
Biochem. Soc. Trans.
,
23
(
2
), pp.
341
366
.10.1042/bst0230341
56.
Kool
,
J. B.
,
Parker
,
J. C.
, and
van Genuchten
,
M. T.
,
1987
, “
Parameter Estimation for Unsaturated Flow and Transport Models - A Review
,”
J. Hydrology
,
91
(
3–4
), pp.
255
293
.10.1016/0022-1694(87)90207-1
57.
Zadeh
,
K. S.
,
2008
, “
Parameter Estimation in Flow Through Partially Saturated Porous Materials
,”
J. Comput. Phys.
,
227
(
24
), pp.
10243
10262
.10.1016/j.jcp.2008.09.007
58.
Zadeh
,
K. S.
, and
Shah
,
S. B.
,
2010
, “
Mathematical Modeling and Parameter Estimation of Axonal Cargo Transport
,”
J. Comput. Neurosci.
,
28
(
3
), pp.
495
507
.10.1007/s10827-010-0232-9
59.
Zadeh
,
K. S.
,
2011
, “
A Synergic Simulation-Optimization Approach for Analyzing Biomolecular Dynamics in Living Organisms
,”
Comput. Biol. Med.
,
41
(
1
), pp.
24
36
.10.1016/j.compbiomed.2010.11.002
60.
Zadeh
,
K. S.
, and
Montas
,
H. J.
,
2014
, “
Parametrization of Flow Processes in Porous Media by Multiobjective Inverse Modeling
,”
J. Comput. Phys.
,
259
, pp.
390
401
.10.1016/j.jcp.2013.12.001
61.
Kuznetsov
,
I. A.
, and
Kuznetsov
,
A. V.
,
2017
, “
Simulating Tubulin-Associated Unit Transport in an Axon: Using Bootstrapping for Estimating Confidence Intervals of Best Fit Parameter Values Obtained From Indirect Experimental Data
,”
Proc. R. Soc. A
,
473
(
2201
), p.
20170045
.10.1098/rspa.2017.0045
62.
Li
,
J. Y.
,
Jensen
,
P. H.
, and
Dahlstrom
,
A.
,
2002
, “
Differential Localization of Alpha-, Beta- and Gamma-Synucleins in the Rat CNS
,”
Neuroscience
,
113
(
2
), pp.
463
478
.10.1016/S0306-4522(02)00143-4
63.
Fortin
,
D.
,
Nemani
,
V.
, and
Voglmaier
,
S.
,
2005
, “
Neural Activity Controls the Synaptic Accumulation of Alpha-Synuclein
,”
J. Neurosci.
,
25
(
47
), pp.
10913
10921
.10.1523/JNEUROSCI.2922-05.2005
64.
Burre
,
J.
,
2015
, “
The Synaptic Function of Alpha-Synuclein
,”
J. Parkinsons Dis.
,
5
(
4
), pp.
699
713
.10.3233/JPD-150642
65.
Kuznetsov
,
I. A.
, and
Kuznetsov
,
A. V.
,
2017
, “
Utilization of the Bootstrap Method for Determining Confidence Intervals of Parameters for a Model of MAP1B Protein Transport in Axons
,”
J. Theory Biol.
,
419
, pp.
350
361
.10.1016/j.jtbi.2017.02.017
66.
Kuznetsov
,
I. A.
, and
Kuznetsov
,
A. V.
,
2018
, “
Simulating the Effect of Formation of Amyloid Plaques on Aggregation of Tau Protein
,”
Proc. R. Soc. A-Math. Phys. Eng. Sci.
,
474
(
2220
), p.
20180511
.10.1098/rspa.2018.0511
You do not currently have access to this content.