Abstract

Dentin is a biological composite exhibiting multilevel hierarchical structure, which confers excellent damage tolerance to this tissue. Despite the progress in characterization of fracture behavior of dentin, the contribution of composite structure consisting of peritubular dentin (PTD), intertubular dentin (ITD) and tubules to fracture resistance remains elusive. In this study, calculations are carried out for energy release rate associated with crack propagation in the microstructure of dentin. Crack penetration and deflection at the PTD–ITD interface are accounted for in the numerical analyses. It is found that high stiffness of the PTD plays a role in increasing crack driving force, promoting crack growth in the microstructure of dentin. For crack penetration across the PTD–ITD interface, the crack driving force increases with increasing tubule radius; and thick PTD generates amplified crack driving force, thereby leading to weak fracture resistance. The driving force for crack deflection increases with the increase in tubule radius in the case of short cracks, while for long cracks, there is a decrease in driving force with increasing tubule radius. Furthermore, we show that the competition between crack penetration and deflection at the PTD-ITD interface is controlled by the ratio of PTD to ITD elastic modulus, tubule radius and thickness of PTD. High PTD stiffness can increase the propensity of crack deflection. The microstructure of dentin with large tubule radius favors crack deflection and thick PTD is beneficial for crack penetration.

References

1.
Deymier-Black
,
A. C.
,
Almer
,
J. D.
,
Stock
,
S. R.
,
Haeffner
,
D. R.
, and
Dunand
,
D. C.
,
2010
, “
Synchrotron X-Ray Diffraction Study of Load Partitioning During Elastic Deformation of Bovine Dentin
,”
Acta Biomater.
,
6
(
6
), pp.
2172
2180
.10.1016/j.actbio.2009.11.017
2.
Bar-On
,
B.
, and
Wagner
,
H. D.
,
2012
, “
Enamel and Dentin as Multi-Scale Bio-Composites
,”
J. Mech. Behav. Biomed. Mater.
,
12
, pp.
174
183
.10.1016/j.jmbbm.2012.03.007
3.
Ji
,
B.
, and
Gao
,
H.
,
2004
, “
Mechanical Properties of Nanostructure of Biological Materials
,”
J. Mech. Phys. Solids
,
52
(
9
), pp.
1963
1990
.10.1016/j.jmps.2004.03.006
4.
Bertassoni
,
L. E.
,
Stankoska
,
K.
, and
Swain
,
M. V.
,
2012
, “
Insights Into the Structure and Composition of the Peritubular Dentin Organic Matrix and the Lamina Limitans
,”
Micron
,
43
(
2–3
), pp.
229
236
.10.1016/j.micron.2011.08.003
5.
Ryou
,
H.
,
Romberg
,
E.
,
Pashley
,
D. H.
,
Tay
,
F. R.
, and
Arola
,
D.
,
2012
, “
Nanoscopic Dynamic Mechanical Properties of Intertubular and Peritubular Dentin
,”
J. Mech. Behav. Biomed. Mater.
,
7
, pp.
3
16
.10.1016/j.jmbbm.2011.08.010
6.
Kruzic
,
J. J.
,
Nalla
,
R. K.
,
Kinney
,
J. H.
, and
Ritchie
,
R. O.
,
2003
, “
Crack Blunting, Crack Bridging and Resistance-Curve Fracture Mechanics in Dentin: Effect of Hydration
,”
Biomaterials
,
24
(
28
), pp.
5209
5221
.10.1016/S0142-9612(03)00458-7
7.
Nazari
,
A.
,
Bajaj
,
D.
,
Zhang
,
D.
,
Romberg
,
E.
, and
Arola
,
D.
,
2009
, “
Aging and the Reduction in Fracture Toughness of Human Dentin
,”
J. Mech. Behav. Biomed. Mater.
,
2
(
5
), pp.
550
559
.10.1016/j.jmbbm.2009.01.008
8.
An
,
B.
,
2017
, “
Analysis of Crack Interacting With the Composite Structure of Dentin
,”
Eur. J. Mech. A-Solids
,
66
, pp.
287
295
.10.1016/j.euromechsol.2017.07.007
9.
Nalla
,
R. K.
,
Balooch
,
M.
,
Ager
,
I. J. W.
,
Kruzic
,
J. J.
,
Kinney
,
J. H.
, and
Ritchie
,
R. O.
,
2005
, “
Effects of Polar Solvents on the Fracture Resistance of Dentin: Role of Water Hydration
,”
Acta Biomater.
,
1
(
1
), pp.
31
43
.10.1016/j.actbio.2004.08.002
10.
Nalla
,
R. K.
,
Kinney
,
J. H.
, and
Ritchie
,
R. O.
,
2003
, “
Effect of Orientation on the in Vitro Fracture Toughness of Dentin: The Role of Toughening Mechanisms
,”
Biomaterials
,
24
(
22
), pp.
3955
3968
.10.1016/S0142-9612(03)00278-3
11.
Lu
,
X.
,
Fernández
,
M. P.
,
Bradley
,
R. S.
,
Rawson
,
S. D.
,
O'Brien
,
M.
,
Hornberger
,
B.
,
Leibowitz
,
M.
,
Tozzi
,
G.
, and
Withers
,
P. J.
,
2019
, “
Anisotropic Crack Propagation and Deformation in Dentin Observed by Four-Dimensional X-Ray Nano-Computed Tomography
,”
Acta Biomater.
,
96
, pp.
400
411
.10.1016/j.actbio.2019.06.042
12.
Lu
,
X.
,
Rawson
,
S. D.
, and
Withers
,
P. J.
,
2018
, “
Effect of Hydration and Crack Orientation on Crack-Tip Strain, Crack Opening Displacement and Crack-Tip Shielding in Elephant Dentin
,”
Dent. Mater.
,
34
(
7
), pp.
1041
1053
.10.1016/j.dental.2018.04.002
13.
Ritchie
,
R. O.
,
2021
, “
Toughening Materials: Enhancing Resistance to Fracture
,”
Philos. Trans. R. Soc., A
,
379
(
2203
), p.
20200437
.10.1098/rsta.2020.0437
14.
Nalla
,
R. K.
,
Kruzic
,
J. J.
, and
Ritchie
,
R. O.
,
2004
, “
On the Origin of the Toughness of Mineralized Tissue: Microcracking or Crack Bridging?
,”
Bone
,
34
(
5
), pp.
790
798
.10.1016/j.bone.2004.02.001
15.
Ivancik
,
J.
, and
Arola
,
D.
,
2013
, “
The Importance of Microstructural Variations on the Fracture Toughness of Human Dentin
,”
Biomaterials
,
34
(
4
), pp.
864
874
.10.1016/j.biomaterials.2012.10.032
16.
An
,
B.
, and
Wagner
,
H. D.
,
2017
, “
The Effect of Microcracking in the Peritubular Dentin on the Fracture of Dentin
,”
J. Biomech.
,
65
, pp.
125
130
.10.1016/j.jbiomech.2017.10.022
17.
Jainaen
,
A.
,
Palamara
,
J. E. A.
, and
Messer
,
H. H.
,
2009
, “
Effect of Dentinal Tubules and Resin-Based Endodontic Sealers on Fracture Properties of Root Dentin
,”
Dent. Mater.
,
25
(
10
), pp.
e73
e81
.10.1016/j.dental.2009.06.006
18.
An
,
B.
, and
Zhang
,
D.
,
2018
, “
An Analysis of Crack Growth in Dentin at the Microstructural Scale
,”
J. Mech. Behav. Biomed. Mater.
,
81
, pp.
149
160
.10.1016/j.jmbbm.2018.02.029
19.
Eltit
,
F.
,
Ebacher
,
V.
, and
Wang
,
R.
,
2013
, “
Inelastic Deformation and Microcracking Process in Human Dentin
,”
J. Struct. Biol.
,
183
(
2
), pp.
141
148
.10.1016/j.jsb.2013.04.002
20.
An
,
B.
, and
Wagner
,
H. D.
,
2016
, “
Role of Microstructure on Fracture of Dentin
,”
J. Mech. Behav. Biomed. Mater.
,
59
, pp.
527
537
.10.1016/j.jmbbm.2016.03.008
21.
He
,
M. Y.
, and
Hutchinson
,
J. W.
,
1989
, “
Crack Deflection at an Interface Between Dissimilar Elastic Materials
,”
Int. J. Solids Struct.
,
25
(
9
), pp.
1053
1067
.10.1016/0020-7683(89)90021-8
22.
Parmigiani
,
J. P.
, and
Thouless
,
M. D.
,
2006
, “
The Roles of Toughness and Cohesive Strength on Crack Deflection at Interfaces
,”
J. Mech. Phys. Solids
,
54
(
2
), pp.
266
287
.10.1016/j.jmps.2005.09.002
23.
Lam
,
Y. F.
,
Abdullah
,
T.
, and
Kirane
,
K.
,
2023
, “
Dynamic Crack Penetration vs. deflection at Material Interfaces and the Role of Rate Dependent Strength and Toughness
,”
J. Mech. Phys. Solids
,
173
, p.
105208
.10.1016/j.jmps.2023.105208
24.
Aranda
,
M. T.
,
Garcia
,
I. G.
,
Quintanas-Corominas
,
A.
, and
Reinoso
,
J.
,
2023
, “
Crack Impinging on a Curved Weak Interface: Penetration or Deflection?
,”
J. Mech. Phys. Solids
,
178
, p.
105326
.10.1016/j.jmps.2023.105326
25.
Maghami
,
E.
,
Pejman
,
R.
, and
Najaf
,
A. R.
,
2021
, “
Fracture Micromechanics of Human Dentin: A Microscale Numerical Model
,”
J. Mech. Behav. Biomed. Mater.
,
114
, p.
104171
.10.1016/j.jmbbm.2020.104171
26.
Emamian
,
A.
,
Aghajani
,
F.
,
Safshekan
,
F.
, and
Tafazzoli-Shadpour
,
M.
,
2021
, “
Nonlinear Viscoelastic Properties of Human Dentin Under Uniaxial Tension
,”
Dent. Mater.
,
37
(
2
), pp.
e59
e68
.10.1016/j.dental.2020.10.025
27.
Bouchbinder
,
E.
, and
Brener
,
E. A.
,
2011
, “
Viscoelastic Fracture of Biological Composites
,”
J. Mech. Phys. Solids
,
59
(
11
), pp.
2279
2293
.10.1016/j.jmps.2011.08.007
28.
Ritchie
,
R. O.
,
2011
, “
The Conflicts Between Strength and Toughness
,”
Nat. Mater.
,
10
(
11
), pp.
817
822
.10.1038/nmat3115
29.
Ziskind
,
D.
,
Hasday
,
M.
,
Cohen
,
S. R.
, and
Wagner
,
H. D.
,
2011
, “
Young's Modulus of Peritubular and Intertubular Human Dentin by Nano-Indentation Tests
,”
J. Struct. Biol.
,
174
(
1
), pp.
23
30
.10.1016/j.jsb.2010.09.010
30.
Chu
,
C. Y.
,
Kuo
,
T. C.
,
Chang
,
S. F.
,
Shyu
,
Y. C.
, and
Lin
,
C. P.
,
2010
, “
Comparison of the Microstructure of Crown and Root Dentin by a Scanning Electron Microscopic Study
,”
J. Dent Sci.
,
5
(
1
), pp.
14
20
.10.1016/S1991-7902(10)60003-7
31.
Montoya
,
C.
,
Arango-Santander
,
S.
,
Peláez-Vargas
,
A.
,
Arola
,
D.
, and
Ossa
,
E. A.
,
2015
, “
Effect of Aging on the Microstructure, Hardness and Chemical Composition of Dentin
,”
Arch. Oral Biol.
,
60
(
12
), pp.
1811
1820
.10.1016/j.archoralbio.2015.10.002
32.
Shinno
,
Y.
,
Ishimoto
,
T.
,
Saito
,
M.
,
Uemura
,
R.
,
Arino
,
M.
,
Marumo
,
K.
,
Nakano
,
T.
, and
Hayashi
,
M.
,
2016
, “
Comprehensive Analyses of How Tubule Occlusion and Advanced Glycation End-Products Diminish Strength of Aged Dentin
,”
Sci. Rep.
,
6
(
1
), p.
19849
.10.1038/srep19849
33.
Wang
,
R.
,
2005
, “
Anisotropic Fracture in Bovine Root and Coronal Dentin
,”
Dent. Mater.
,
21
(
5
), pp.
429
436
.10.1016/j.dental.2004.07.008
34.
Aranda
,
M. T.
,
Garcia
,
I. G.
,
Reinoso
,
J.
,
Mantic
,
V.
, and
Paggi
,
M.
,
2020
, “
Crack Arrest Through Branching at Curved Weak Interfaces: An Experimental and Numerical Study
,”
Theor. Appl. Fract. Mech.
,
105
, p.
102389
.10.1016/j.tafmec.2019.102389
35.
Arola
,
D.
, and
Reprogel
,
R. K.
,
2005
, “
Effects of Aging on the Mechanical Behavior of Human Dentin
,”
Biomaterials
,
26
(
18
), pp.
4051
4061
.10.1016/j.biomaterials.2004.10.029
36.
Yan
,
W.
,
Jiang
,
E.
,
Renteria
,
C.
,
Paranjpe
,
A.
,
Arola
,
D.
,
Liao
,
L.
,
Ren
,
X.
, and
Zhang
,
H.
,
2022
, “
Odontoblast Apoptosis and Intratubular Mineralization of Sclerotic Dentin With Aging
,”
Arch. Oral Biol.
,
136
, p.
105371
.10.1016/j.archoralbio.2022.105371
You do not currently have access to this content.