The mechanical performance of cancellous bone is characterized using experiments which apply linear poroelasticity theory. It is hypothesized that the anisotropic organization of the solid and pore volumes of cancellous bone can be physically characterized separately (no deformable boundary interactive effects) within the same bone sample. Due to its spongy construction, the in vivo mechanical function of cancellous or trabecular bone is dependent upon fluid and solid materials which may interact in a hydraulic, convective fashion during functional loading. This project provides insight into the organization of the tissue, i.e., the trabecular connectivity, by defining the separate nature of this biphasic performance. Previous fluid flow experiments [Kohles et al., 2001, Journal of Biomechanics, 34(11), pp. 1197–1202] describe the pore space via orthotropic permeability. Ultrasonic wave propagation through the trabecular network is used to describe the solid component via orthotropic elastic moduli and material stiffness coefficients. The linear poroelastic nature of the tissue is further described by relating transport (fluid flow) and elasticity (trabecular load transmission) during regression analysis. In addition, an empirical relationship between permeability and porosity is applied to the collected data. Mean parameters in the superior-inferior (SI) orientation of cubic samples n=20 harvested from a single bovine distal femur were the largest p<0.05 in comparison to medial-lateral (ML) and anterior-posterior (AP) orientations: Apparent elastic modulus (2,139 MPa), permeability (4.65×1010 m2), and material stiffness coefficient (13.6 GPa). A negative correlation between permeability as a predictor of structural elastic modulus supported a parametric relationship in the ML R2=0.4793, AP R2=0.3018, and SI R2=0.6445 directions p<0.05.

1.
Carter
,
D. R.
and
Hayes
,
W. C.
,
1977
, “
The Compressive Behavior of Bone as a Two-Phase Porous Structure
,”
J. Bone Jt. Surg.
,
59A
, pp.
954
962
.
2.
Simkin
,
P. A.
,
Houglum
,
S. J.
, and
Pickerell
,
C. C.
,
1985a
, “
Compliance and Viscoelasticity of Canine Shoulders Loaded in vitro
,”
J. Biomech.
,
18
, p.
735
743
.
3.
Keaveny
,
T. M.
, and
Hayes
,
W. C.
,
1993
, “
A 20-Year Perspective on the Mechanical Properties of Trabecular Bone
,”
ASME J. Biomech. Eng.
,
115
, pp.
534
542
.
4.
Ochoa
,
J. A.
,
Sanders
,
A. P.
,
Kiesler
,
T. W.
,
Heck
,
D. A.
,
Toombs
,
J. P.
,
Brandt
,
K. D.
, and
Hillberry
,
B. M.
,
1977
, “
In vivo Observations of Hydraulic Stiffening in the Canine Femoral Head
,”
ASME J. Biomech. Eng.
,
119
, pp
103
108
.
5.
Arramon
,
Y. P.
, and
Cowin
,
S. C.
,
1997
, “
Hydraulic Stiffening of Cancellous Bone
,”
Forma
,
12
, pp.
209
221
.
6.
Cowin
,
S. C.
,
1999
, “
Bone poroelasticity
,”
J. Biomech.
,
32
, pp.
217
238
.
7.
Mow
,
V. C.
,
Kuei
,
S. C.
, and
Lai
,
W. L.
,
1980
, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
ASME J. Biomech. Eng.
,
102
, pp.
73
84
.
8.
Ashman
,
R. B.
,
Rho
,
J. Y.
, and
Turner
,
C. H.
,
1989
, “
Anatomical Variation of Orthotropic Elastic Moduli of the Proximal Tibia
,”
J. Biomech.
,
22
(
8–9
), pp.
895
900
.
9.
Grimm
,
M. J.
, and
Williams
,
J. L.
,
1997
, “
Measurements of Permeability in Human Calcaneal Trabecular Bone
,”
J. Biomech.
,
30
(
7
), pp.
743
745
.
10.
Nauman
,
E. A.
,
Fong
,
K. E.
, and
Keaveny
,
T. M.
,
1999
, “
Dependence of Intertrabecular Permeability on Flow Direction and Anatomic Site
,”
Ann. Biomed. Eng.
,
27
, pp.
517
524
.
11.
Giesen
,
E. B. W.
,
Ding
,
M.
,
Dalstra
,
M.
,
van Eijden
,
T. M. G. J.
,
2001
, “
Mechanical Properties of Cancellous Bone in the Human Mandibular Condyle are Anisotropic
,”
J. Biomech.
,
34
(
6
), pp.
799
803
.
12.
McKelvie
,
M. L.
, and
Palmer
,
S. B.
,
1991
, “
The Interaction of Ultrasound with Cancellous Bone
,”
Phys. Med. Biol.
,
36
, pp.
1331
1340
.
13.
Tavakoli
,
M. B.
, and
Evans
,
J. A.
,
1992
, “
The Effect of Bone Structure on Ultrasonic Attenuation and Velocity
,”
Ultrasonics
,
30
, pp.
389
395
.
14.
Hosokawa
,
A.
, and
Otani
,
T.
,
1997
, “
Ultrasonic Wave Propagation in Bovine Cancellous Bone
,”
J. Acoust. Soc. Am.
,
101
, pp.
558
562
.
15.
Williams
,
J. L.
, and
Lewis
,
J. L.
,
1982
, “
Properties and an Anisotropic Model of Cancellous Bone from the Proximal Tibial Epiphysis
,”
J. Biomech. Eng.
,
104
, pp.
50
56
.
16.
Williams
,
J. L.
, and
Johnson
,
W. J. H.
,
1989
, “
Elastic Constants of Composites Formed from PMMA Bone Cement and Anisotropic Bovine Tibial Cancellous Bone
,”
J. Biomech.
,
22
, pp.
673
682
.
17.
Pollack
,
S. R.
,
Petrov
,
N.
,
Salzstein
,
R.
,
Brankov
,
G.
, and
Blagoeva
,
R.
,
1984
, “
An Anatomical Model for Streaming Potentials in Osteons
,”
J. Biomech.
,
17
(
8
), pp.
627
636
.
18.
Wehrli
,
F. W.
,
Ford
,
J. C.
,
Chung
,
H. W.
,
Wehrli
,
S. L.
,
Williams
,
J. L.
,
Grimm
,
M. J.
,
Kugelmass
,
S. D.
, and
Jara
,
H.
,
1993
, “
Potential Role of Nuclear Magnetic Resonance for the Evaluation of Trabecular Bone Quality
,”
Calcif. Tissue Int.
,
53
,
S162–S169
S162–S169
.
19.
Schemitsch
,
E. H.
,
Kowalski
,
M. J.
, and
Swiontkowski
,
M. F.
,
1994
, “
Evaluation of a Laser Doppler Flowmetry Implantable Fiber System for Determination of Threshold Thickness for Flow Detection in Bone
,”
Calcif. Tissue Int.
,
55
, pp.
216
222
.
20.
MacGinitie
,
L. A.
,
Stanley
,
G. D.
,
Bieber
,
W. A.
, and
Wu
,
D. D.
,
1997
,“
Bone Streaming Potentials and Currents Depend on Anatomical Structure and Loading Orientation
,”
J. Biomech.
,
30
(
11–12
), pp.
1133
1139
.
21.
Wang
,
L.
,
Cowin
,
S. C.
,
Weinbaum
,
S.
, and
Fritton
,
S. P.
,
2000
, “
Modeling Tracer Transport in an Osteon Under Cyclic Loading
,”
Ann. Biomed. Eng.
,
28
, pp.
1200
1209
.
22.
Bryant
,
J. D.
,
1983
, “
The Effect of Impact on the Marrow Pressure of Long Bone in vitro
,”
J. Biomech.
,
16
, pp.
659
665
.
23.
Simkin
,
P. A.
,
Pickerell
,
C. C.
, and
Wallis
,
W. J.
,
1985b
, “
Hydraulic Resistance in Bones of the Canine Shoulder
,”
J. Biomech.
,
18
, pp.
657
663
.
24.
Downey
,
D. J.
,
Simkin
,
P. A.
, and
Taggart
,
R.
,
1988
, “
The Effect of Compressive Loading on Intraosseous Pressure in the Femoral Head in vitro
,”
J. Bone Jt. Surg.
,
70A
, pp.
871
877
.
25.
Ochoa
,
J. A.
,
Sanders
,
A. P.
,
Heck
,
D. A.
, and
Hillberry
,
B. M.
,
1991
, “
Stiffening of the Femoral Head Due to Intertrabecular Fluid and Intraosseous Pressure
,”
J. Biomech. Eng.
,
113
, pp.
259
262
.
26.
Kohles
,
S. S.
, and
Vanderby
, Jr.,
R.
,
1997
, “
Thermographic Strain Analysis of the Proximal Canine Femur
,”
Med. Eng. Phys.
,
19
, pp.
262
266
.
27.
Dillman
,
R. M.
,
Roer
,
R. D.
, and
Gay
,
D. M.
,
1991
, “
Fluid Movement in Bone: Theoretical and Empirical
,”
J. Biomech.
,
24
, pp.
S163–S177
S163–S177
.
28.
Hui
,
P. W.
,
Leung
,
P. C.
, and
Sher
,
A.
,
1996
,“
Fluid Conductance of Cancellous Bone Graft as a Predictor for Graft-Host Interface Healing
,”
J. Biomech.
,
29
, pp.
123
132
.
29.
Cowin
,
S. C.
,
1986
, “
Wolff’s Law of Trabecular Architecture at Remodeling Equilibrium
,”
J. Biomech. Eng.
,
108
, pp.
83
88
.
30.
Young, D. W., and Kohles, S. S., 2001, “Experimental Determination of bone Anisotropic Poroelasticity Parameters,” Proc. 27th Annual Northeast Bioengineering Conference, 27, pp. 41–42.
31.
Johnson, A. T., 1999, Biological Process Engineering: An Analogical Approach to Fluid Flow, Heat Transfer, and Mass Transfer Applied to Biological Systems, John Wiley & Sons, Inc., New York.
32.
Thompson
,
M.
, and
Willis
,
J. R.
,
1991
, “
Reformation of the Equations of Anisotropic Poroelasticity
,”
ASME J. Appl. Mech.
,
58
, pp.
612
616
.
33.
Kohles
,
S. S.
,
Roberts
,
J. B.
,
Upton
,
M. L.
,
Wilson
,
C. G.
,
Schlichting
,
A. L.
,
Cooper
,
L. J.
,
Thibeault
,
R. A.
, and
Bonassar
,
L. J.
,
2000
, “
Anisotropic Elastic and Transport Properties of Cancellous Bone
,”
Ann. Biomed. Eng.
,
28
(
S1
), p.
S6
S6
.
34.
Roberts, J. B., 2000, “Anisotropic Elastic and Transport Properties of Cancellous Bone,” Masters Thesis, Worcester Polytechnic Institute.
35.
Kohles
,
S. S.
,
Roberts
,
J. B.
,
Upton
,
M. L.
,
Wilson
,
C. G.
,
Bonassar
,
L. J.
, and
Schlichting
,
A. L.
,
2001
, “
Direct Perfusion Measurements of Cancellous Bone Anisotropic Permeability
,”
J. Biomech.
,
34
(
11
), pp.
1197
1202
.
36.
Scheidegger, A. E., 1974, The Physics of Flow Through Porous Media, University of Toronto Press, Toronto, Canada.
37.
Kessler, D. P., and Greenkorn, R. A., 1999, Momentum, Heat, and Mass Transfer Fundamentals, Marcel Dekker, Inc., NY.
38.
Kohles
,
S. S.
,
Bowers
,
J. R.
,
Vailas
,
A. C.
, and
Vanderby
, Jr.,
R.
,
1997
, “
Ultrasonic Wave Velocity Measurement in Small Polymeric and Cortical Bone Specimens
,”
J. Biomech. Eng.
,
119
(
3
), pp.
232
236
.
39.
Ashman
,
R. B.
,
Corin
,
J. D.
, and
Turner
,
C. H.
,
1987
, “
Elastic Properties of Cancellous Bone: Measurement by an Ultrasonic Technique
,”
J. Biomech.
,
20
(
10
), pp.
979
986
.
40.
Williams
,
J. L.
,
1992
, “
Ultrasonic Wave Propagation in Cancellous and Cortical Bone: Prediction of Some Experimental Results by Biot’s Theory
,”
J. Acoust. Soc. Am.
,
91
(
2
), pp.
1106
1112
.
41.
Njeh
,
C. F.
,
Hodgskinson
,
R.
,
Currey
,
J. D.
, and
Langton
,
C. M.
,
1996
, “
Orthogonal Relationships Between Ultrasonic Velocity and Material Properties of Bovine Cancellous Bone
,”
Med. Eng. Phys.
,
18
(
5
), pp.
373
381
.
42.
Ashman
,
R. B.
, and
Rho
,
J. Y.
,
1998
, “
Elastic Modulus of Trabecular Bone Material
,”
J. Biomech.
,
21
(
3
), pp.
177
181
.
43.
Rho
,
J. Y.
,
Ashman
,
R. B.
, and
Turner
,
C. H.
,
1993
, “
Young’s Moduli of Trabecular and Cortical Bone Material: Ultrasonic and Microtensile Measurements
,”
J. Biomech.
,
26
, pp.
111
119
.
44.
van Rietbergen
,
B.
,
2001
, “
Micro-FE Analyses of Bone: State of the Art
,”
Adv. Exp. Med. Biol.
,
496
,
21
30
.
45.
Bourne, B. C., Morgan, T. G., Paschalis, E. P., and van der Meulen, M. C., 2002, “Cancellous Bone Anisotropy Arises from both Architecture and Material Properties,” Trans. 48th Annual Orthopaedic Research Society Meeting, 27, p. 558.
46.
Homminga, J., McCreadie, B. R., Ciarelli, T. E., Weinans, H., Goldstein, S. A., and Huiskes, R., 2002, “Trabecular Bone Mechanical Properties from Normals and Patients with Hip Fractures Differ on the Apparent Level, Not on the Tissue Level,” Trans. 48th Annual Orthopaedic Research Society Meeting, 27, p. 570.
47.
Niebur, G., Yeh, O. C., and Keaveny, T. M., 2002, “Damage Evolution in Trabecular Bone is Anisotropic,” Trans. 48th Annual Orthopaedic Research Society Meeting, 27, p. 323.
48.
Miller
,
Z.
,
Fuchs
,
M. B.
, and
Arcan
,
M.
,
2002
, “
Trabecular Bone Adaptation with an Orthotropic Material Model
,”
J. Biomech.
,
35
(
2
), pp.
247
256
.
49.
Kohles, S. S., Roberts, J. G., Upton, M. L., Wilson, C. G., Bonassar, L. J. Schlichting, A. L. 2001, “Anisotropic Elastic and Transport Properties of Cancellous Bone,” Trans. 47th Annual Orthopaedic Research Society Meeting, 26, p. 516.
50.
Lim
,
T. H.
, and
Hong
,
J. H.
,
2000
, “
Poroelastic Properties of Bovine Vertebral Trabecular Bone
,”
J. Orthop. Res.
,
18
(
4
), pp.
671
677
.
51.
Keaveny
,
T. M.
,
Wachtel
,
E. F.
,
Zadesky
,
S. P.
, and
Arramon
,
Y. P.
,
1999
, “
Application of the Tsai-Wu Quadratic Multiaxial Failure Criterion to Bovine Trabecular Bone
,”
ASME J. Biomech. Eng.
,
121
(
1
), pp.
99
107
.
52.
Kohles
,
S. S.
, and
Martinez
,
D. A.
,
2000
, “
Elastic and Physicochemical Relationships in Cortical Bone
,”
J. Biomed. Mater. Res.
,
49
(
4
), pp.
479
488
.
You do not currently have access to this content.