Multibody dynamics simulations are currently widely accepted as valuable means for dynamic performance analysis of mechanical systems. The evolution of theoretical and computational aspects of the multibody dynamics discipline makes it conducive these days for other types of applications, in addition to pure simulations. One very important such application is design optimization for multibody systems. In this paper, we focus on gradient-based optimization in order to find local minima. Gradients are calculated efficiently via adjoint sensitivity analysis techniques. Current approaches have limitations in terms of efficiently performing sensitivity analysis for complex systems with respect to multiple design parameters. To improve the state of the art, the adjoint sensitivity approach of multibody systems in the context of the penalty formulation is developed in this study. The new theory developed is then demonstrated on one academic case study, a five-bar mechanism, and on one real-life system, a 14 degree of freedom (DOF) vehicle model. The five-bar mechanism is used to validate the sensitivity approach derived in this paper. The full vehicle model is used to demonstrate the capability of the new approach developed to perform sensitivity analysis and optimization for large and complex multibody systems with respect to multiple design parameters with high efficiency.

References

1.
Haug
,
E.
, and
Arora
,
J.
,
1978
, “
Design Sensitivity Analysis of Elastic Mechanical Systems
,”
Comput. Meth. Appl. Mech. Eng.
,
15
(
1
), pp.
35
62
.10.1016/0045-7825(78)90004-X
2.
Haug
,
E.
,
Wehage
,
R.
, and
Mani
,
N.
,
1984
, “
Design Sensitivity Analysis of Largescale Constrained Dynamic Mechanical Systems
,”
ASME J. Mech. Trans. Autom. Des.
,
106
(
2
), pp.
156
162
.10.1115/1.3258573
3.
Krishnaswami
,
P.
, and
Bhatti
,
M.
,
1984
, “
A General Approach for Design Sensitivity Analysis of Constrained Dynamic Systems
,”
ASME J. Mech. Trans. Autom. Des.
, pp.
84
132
.
4.
Haug
,
E.
,
1987
,
Computer Aided Optimal Design: Structural and Mechanical Systems
,
C. A. M.
Soares
, ed., Vol.
27
(NATO ASI Series. Series F, Computer and Systems Sciences),
Springer-Verlag
, Berlin, Germany.
5.
Chang
,
C.
, and
Nikravesh
,
P.
,
1985
, “
Optimal Design of Mechanical Systems With Constraint Violation Stabilization Method
,”
J. Mech. Trans. Autom. Des.
,
107
(
4
), pp.
493
498
.10.1115/1.3260751
6.
Pagalday
,
J.
, and
Avello
,
A.
,
1997
, “
Optimization of Multibody Dynamics Using Object Oriented Programming and a Mixed Numerical-Symbolic Penalty Formulation
,”
Mech. Mach. Theory
,
32
(
2
), pp.
161
174
.10.1016/S0094-114X(96)00037-7
7.
Haug
,
E.
,
Wehage
,
R.
, and
Barman
,
N.
,
1981
, “
Design Sensitivity Analysis of Planar Mechanism and Machine Dynamics
,”
ASME J. Mech. Des.
,
103
(
3
), pp.
560
570
.10.1115/1.3254955
8.
Bestle
,
D.
, and
Seybold
,
J.
,
1992
, “
Sensitivity Analysis of Constrained Multibody Systems
,”
Arch. Appl. Mech.
,
62
, pp.
181
190
.
9.
Bestle
,
D.
, and
Eberhard
,
P.
,
1992
, “
Analyzing and Optimizing Multibody Systems
,”
Mech. Struct. Mach.
,
20
(
1
), pp.
67
92
.10.1080/08905459208905161
10.
Dias
,
J.
, and
Pereira
,
M.
,
1997
, “
Sensitivity Analysis of Rigid-Flexible Multibody Systems
,”
Multibody Sys. Dyn.
,
1
, pp.
303
322
.10.1023/A:1009790202712
11.
Feehery
,
W. F.
,
Tolsma
,
J. E.
, and
Barton
,
P. I.
,
1997
, “
Efficient Sensitivity Analysis of Large-Scale Differential-Algebraic Systems
,”
Appl. Numer. Math.
,
25
(
1
), pp.
41
54
.10.1016/S0168-9274(97)00050-0
12.
Anderson
,
K. S.
, and
Hsu
,
Y.
,
2002
, “
Analytical Fully-Recursive Sensitivity Analysis for Multibody Dynamic Chain Systems
,”
Multibody Sys. Dyn.
,
8
(
1
), pp.
1
27
.10.1023/A:1015867515213
13.
Anderson
,
K.
, and
Hsu
,
Y.
,
2004
, “
Order-(n+m) Direct Differentiation Determination of Design Sensitivity for Constrained Multibody Dynamic Systems
,”
Struct. Multidiscip. Optim.
,
26
(
3–4
), pp.
171
182
.
14.
Ding
,
J.-Y.
,
Pan
,
Z.-K.
, and
Chen
,
L.-Q.
,
2007
, “
Second Order Adjoint Sensitivity Analysis of Multibody Systems Described by Differential-Algebraic Equations
,”
Multibody Sys. Dyn.
,
18
, pp.
599
617
.10.1007/s11044-007-9080-4
15.
Schaffer
,
A.
,
2006
, “
Stabilized Index-1 Differential-Algebraic Formulations for Sensitivity Analysis of Multi-Body Dynamics
,”
Proc. Inst. Mech. Eng. Part K: J. Multi-Body Dyn.
,
220
(
3
), pp.
141
156
.10.1243/1464419JMBD62
16.
Neto
,
M. A.
,
Ambrosio
,
J. A. C.
, and
Leal
,
R. P.
,
2009
, “
Sensitivity Analysis of Flexible Multibody Systems Using Composite Materials Components
,”
Int. J. Numer. Meth. Eng.
,
77
(
3
), pp.
386
413
.10.1002/nme.2417
17.
Bhalerao
,
K.
,
Poursina
,
M.
, and
Anderson
,
K.
,
2010
, “
An Efficient Direct Differentiation Approach for Sensitivity Analysis of Flexible Multibody Systems
,”
Multibody Sys. Dyn.
,
23
(
2
), pp.
121
140
.10.1007/s11044-009-9176-0
18.
Banerjee
,
J. M.
, and
McPhee
,
J.
,
2013
, “
Multibody Dynamics. Computational Methods and Applications
,”
Symbolic Sensitivity Analysis of Multibody Systems
, Vol.
28
(Computational Methods in Applied Sciences),
Springer
,
Brussels, Belgium
, pp.
123
146
.
19.
Brenan
,
K.
,
Campbell
,
S.
, and
Petzold
,
L.
,
1989
,
Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations
,
North-Holland
,
New York
.10.1137/1.9781611971224
20.
Ascher
,
U.
, and
Petzold
,
L.
,
1998
,
Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.10.1137/1.9781611971392
21.
Dopico
,
D.
,
Zhu
,
Y.
,
Sandu
,
A.
, and
Sandu
,
C.
,
2014
, “
Direct and Adjoint Sensitivity Analysis of ODE Multibody Formulations
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
1
), p.
011012
.10.1115/1.4026492
22.
Jalon
,
J. G. D.
, and
Bayo
,
E.
,
1994
,
Kinematic and Dynamic Simulation of Multibody Systems: The Real Time Challenge
,
Springer-Verlag
,
New York
.
23.
Bayo
,
E.
,
García de Jalon
,
J.
, and
Serna
,
M.
,
1988
, “
A Modified Lagrangian Formulation for the Dynamic Analysis of Constrained Mechanical Systems
,”
Comput. Meth. Appl. Mech. Eng.
,
71
(
2
), pp.
183
195
.10.1016/0045-7825(88)90085-0
24.
Garcia de Jalon
,
J.
, and
Bayo
,
E.
,
1994
,
Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge
,
Springer-Verlag
,
New York
.
25.
Zhu
,
C.
,
Byrd
,
R. H.
,
Lu
,
P.
, and
Nocedal
,
J.
,
1997
, “
Algorithm 778: L-BFGS-B: Fortran Subroutines for Large-Scale Bound-Constrained Optimization
,”
ACM Trans. Math. Softw.
,
23
(
4
), pp.
550
560
.10.1145/279232.279236
26.
Cao
,
Y.
,
Li
,
S.
,
Petzold
,
L.
, and
Serban
,
R.
,
2003
, “
Adjoint Sensitivity Analysis for Differential-Algebraic Equations: The Adjoint DAE System and Its Numerical Solution
,”
SIAM J. Sci. Comput.
,
24
(
3
), pp.
1076
1089
.10.1137/S1064827501380630
27.
Frik
,
S.
,
Leister
,
G.
, and
Schwartz
,
W.
,
1993
, “
Simulation of the IAVSD Road Vehicle Benchmark Bombardier Iltis With Fasim, Medyna, Neweul and Simpack
,”
Veh. Syst. Dyn.
,
22
(
suppl
), pp.
215
253
.10.1080/00423119308969496
28.
Rodríguez
,
P. L.
,
Mántaras
,
D. Á.
, and
Vera
,
C.
,
2004
,
Ingeniería del automóvil: sistemas y comportamiento dinámico
,
Thomson, Madrid, Spain
.
You do not currently have access to this content.