This technical brief describes the procedure and demonstrates the feasibility of integrating soil/tire models using the absolute nodal coordinate formulation (ANCF). The effects of both the soil plasticity and the tire elasticity are captured using ANCF finite elements (FEs). Capturing the tire/soil dynamic interaction is necessary for the construction of higher fidelity off-road vehicle models. ANCF finite elements, as will be demonstrated in this paper, can be effectively used for the modeling of tire and soil mechanics. In this investigation, the soil model is developed using ANCF hexahedral finite elements, while the tire model can be developed using different ANCF finite elements including beam, plate, or solid elements; ANCF plate elements are used in this investigation for demonstration purposes. The Drucker–Prager plastic material, which is used to model the behavior of the soil, is appropriate for the simulation of a number of types of soils and offers a good starting point for computational plasticity in terramechanics applications. Such higher fidelity simulations can be fruitfully applied toward the investigation of complex dynamic phenomena in terramechanics. The proposed ANCF/Drucker–Prager soil model is implemented in a multibody system (MBS) algorithm which allows for using the ANCF reference node (ANCF-RN) to apply linear connectivity conditions between ANCF finite elements and the rigid components of the vehicle. This new implementation is demonstrated using a tire of an off-road wheeled vehicle. The generality of the approach allows for the simulation of general vehicle maneuvers over unprepared terrain. Unlike other approaches that implement force or superelement models into an MBS simulation environment, in the approach proposed in this paper both the soil material and vehicle parameters can be altered independently. This allows for a greater degree of flexibility in the development of computational models for the evaluation of the off-road wheeled vehicle performance.

References

1.
Wong
,
J. Y.
,
2010
,
Terramechanics and Off-Road Vehicle Engineering
, 2nd ed.,
Butterworth-Heinemann
,
Oxford, UK
.
2.
Shoop
,
S. A.
,
2001
, “
Finite Element Modeling of Tire-Terrain Interaction
,” U.S. Army Corps of Engineers, Engineer Research and Development Center,
Technical Report No. ERDC/CRREL TR-01-16
.
3.
Liu
,
C. H.
, and
Wong
,
J. Y.
,
1996
, “
Numerical Simulations of Tire–Soil Interaction Based on Critical State Soil Mechanics
,”
J. Terramechanics
,
33
(
5
), pp.
209
221
.
4.
Taheri
,
S.
,
Sandu
,
C.
,
Taheri
,
S.
,
Pinto
,
E.
, and
Gorsich
,
D.
,
2015
, “
A Technical Survey on Terramechanics Models for Tire–Terrain Interaction Used in Modeling and Simulation of Wheeled Vehicles
,”
J. Terramechanics
,
57
, pp.
1
22
.
5.
Contreras
,
U.
,
Li
,
G. B.
,
Foster
,
C. D.
,
Shabana
,
A. A.
,
Jayakumar
,
P.
, and
Letherwood
,
M.
,
2013
, “
Soil Models and Vehicle System Dynamics
,”
ASME Appl. Mech. Rev.
,
65
(
4
), p.
040802
.
6.
Xia
,
K.
, and
Yang
,
Y.
,
2012
, “
Three-Dimensional Finite Element Modeling of Tire/Ground Interaction
,”
Int. J. Numer. Anal. Methods Geomech.
,
36
(
4
), pp.
498
516
.
7.
Hambleton
,
J. P.
, and
Drescher
,
A.
,
2009
, “
On Modeling a Rolling Wheel in the Presence of Plastic Deformation as a Three- or Two-Dimensional Process
,”
Int. J. Mech. Sci.
,
51
(
11
), pp.
846
855
.
8.
Nankali
,
N.
,
Namjoo
,
M.
, and
Maleki
,
M. R.
,
2012
, “
Stress Analysis of Tractor Tire Interaction With Soft Soil Using 2D Finite Element Method
,”
Int. J. Adv. Des. Manuf. Technol.
,
5
(
3
), pp.
107
111
.
9.
Xia
,
K.
,
2011
, “
Finite Element Modeling of Tire/Terrain Interaction: Application to Predicting Soil Compaction and Tire Mobility
,”
J. Terramechanics
,
48
(
2
), pp.
113
123
.
10.
Grujicic
,
M.
,
Bell
,
W. C.
,
Arakere
,
G.
, and
Haque
,
I.
,
2009
, “
Finite Element Analysis of the Effect of Up-Armouring on the Off-Road Braking and Sharp-Turn Performance of a High-Mobility Multi-Purpose Wheeled Vehicle
,”
Proc. Inst. Mech. Eng., Part D
,
223
(
11
), pp.
1419
1434
.
11.
Mohsenimanesh
,
A.
,
Ward
,
S. M.
,
Owende
,
P. O. M.
, and
Javadi
,
A.
,
2009
, “
Modeling of Pneumatic Tractor Tyre Interaction With Multi-Layered Soil
,”
Biosyst. Eng.
,
104
(
2
), pp.
191
198
.
12.
Pruiksma
,
J. P.
,
Kruse
,
G. A. M.
,
Teunissen
,
J. A. M.
, and
van Winnendael
,
M. F. P.
,
2011
, “
Tractive Performance Modelling of the Exomars Rover Wheel Design on Loosely Packed Soil Using the Coupled Eulerian–Lagrangian Finite Element Technique
,”
11th Symposium on Advanced Space Technologies in Robotics and Automation
,
Noordwijk, The Netherlands
, Apr. 12–14, pp. 12–15.
13.
Shoop
,
S. A.
,
Kestler
,
K.
, and
Haehnel
,
R.
,
2006
, “
Finite Element Modeling of Tires on Snow
,”
Tire Sci. Technol.
,
34
(
1
), pp.
2
37
.
14.
Li
,
H.
, and
Schindler
,
C.
,
2013
, “
Analysis of Soil Compaction and Tire Mobility With Finite Element Method
,”
Proc. Inst. Mech. Eng., Part K
,
227
(
3
), pp.
275
291
.
15.
Contreras
,
U.
,
Recuero
,
A. M.
,
Hamed
,
A. M.
,
Wei
,
C.
,
Foster
,
C.
,
Jayakumar
,
P.
,
Letherwood
,
M. D.
,
Gorsich
,
D. J.
, and
Shabana
,
A. A.
,
2014
, “
Implementation of Continuum-Based Plasticity Formulation for Vehicle/Soil Interaction in Multibody System Algorithms
,” Modeling and Simulation, Validation and Testing, GVSETS, Novi, MI, Aug. 12–14.
16.
Contreras
,
U.
,
Recuero
,
A. M.
,
Jayakumar
,
P.
,
Foster
,
C.
,
Letherwood
,
M. D.
,
Gorsich
,
D. J.
, and
Shabana
,
A. A.
, “
Integration of ANCF Continuum-Based Soil Plasticity for Off-Road Vehicle Mobility in Multibody System Dynamics
,” (to be submitted).
17.
Yakoub
,
R. Y.
, and
Shabana
,
A. A.
,
1999
, “
Use of Cholesky Coordinates and the Absolute Nodal Coordinate Formulation in the Computer Simulation of Flexible Multibody Systems
,”
Nonlinear Dyn.
,
20
(
3
), pp.
267
282
.
18.
de Borst
,
R.
, and
Groen
,
A. E.
,
1999
, “
Towards Efficient and Robust Elements for 3D-Soil Plasticity
,”
Comput. Struct.
,
70
(
1
), pp.
23
34
.
19.
de Souza Neto
,
E. A.
,
Peric
,
D.
, and
Owen
,
D. R. J.
,
2008
,
Computational Methods for Plasticity: Theory and Applications
,
Wiley
,
New York
.
20.
Simo
,
J. C.
, and
Hughes
,
T. J. R.
,
1998
,
Computational Inelasticity
,
Springer
,
New York
.
21.
Borja
,
R. I.
,
2013
,
Plasticity: Modeling & Computation
,
Springer
,
New York
.
22.
Olshevskiy
,
A.
,
Dmitrochenko
,
O.
, and
Kim
,
C. W.
,
2013
, “
Three-Dimensional Solid Brick Element Using Slopes in the Absolute Nodal Coordinate Formulation
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
2
), p.
021001
.
23.
Shabana
,
A. A.
,
2015
, “
ANCF Reference Node for Multibody System Analysis
,”
Proc. Inst. Mech. Eng., Part K
,
229
, pp.
109
112
.
24.
Recuero
,
A. M.
,
Aceituno
,
J. F.
,
Escalona
,
J. L.
, and
Shabana
,
A. A.
, “
A Nonlinear Approach for Modeling Rail Flexibility Using the Absolute Nodal Coordinate Formulation
,”
Nonlinear Dyn.
(published online).
25.
Liu
,
C.
,
Tian
,
Q.
, and
Hu
,
H. Y.
,
2011
, “
Dynamics of Large Scale Rigid-Flexible Multibody System Composed of Composite Laminated Plates
,”
Multibody Syst. Dyn.
,
26
(
3
), pp.
283
305
.
26.
Patel
,
M.
,
Orzechowski
,
G.
,
Tian
,
Q.
, and
Shabana
,
A. A.
, “
A New MBS Approach for Tire Modeling Using ANCF Finite Elements
,”
Proc. Inst. Mech. Eng., Part K
(published online).
You do not currently have access to this content.