A mathematical model that invokes the Kutta condition to account for vortex shedding from the trailing edge of a free hydrofoil in a planar ideal fluid is compared with a canonical model for the dynamics of a terrestrial vehicle subject to a nonintegrable velocity constraint. The Kutta condition is shown to be nonintegrable in a sense that parallels that in which the constraint on the terrestrial vehicle is nonintegrable. Simulations of the two systems' dynamics reinforce the analogy between the two.
Issue Section:
Research Papers
References
1.
Kelly
, S. D.
, and Xiong
, H.
, 2010
, “Self-Propulsion of a Free Hydrofoil With Localized Discrete Vortex Shedding: Analytical Modeling and Simulation
,” Theor. Comput. Fluid Dyn.
, 24
(1
), pp. 45
–50
.2.
Kanso
, E.
, 2010
, “Swimming in an Inviscid Fluid
,” Theor. Comput. Fluid Dyn.
, 24
, pp. 201
–207
.3.
Tallapragada
, P.
, and Kelly
, S. D.
, 2013
, “Dynamics and Self-Propulsion of a Spherical Body Shedding Coaxial Vortex Rings in an Ideal Fluid
,” Regular Chaotic Dyn.
, 18
, pp. 21
–32
.4.
Tallapragada
, P.
, and Kelly
, S. D.
, 2013
, “Reduced-Order Modeling of Propulsive Vortex Shedding From a Free Pitching Hydrofoil With an Internal Rotor
,” American Control Conference
, June 17–19, pp. 615
–620
.5.
Tallapragada
, P.
, and Kelly
, S. D.
, 2012
, “Up a Creek Without a Paddle: Idealized Aquatic Locomotion Via Forward Vortex Shedding
,” ASME
Paper No. DSCC2012-MOVIC2012-8863. 6.
Tallapragada
, P.
, 2015
, “A Swimming Robot With an Internal Rotor as a Nonholonomic System
,” American Control Conference
, July 1–3, pp. 657
–662
.7.
Tallapragada
, P.
, and Kelly
, S. D.
, 2015
, “Self-Propulsion of Free Solid Bodies With Internal Rotors Via Localized Singular Vortex Shedding in Planar Ideal Fluids
,” Eur. Phys. J.: Spec. Top.
, 224
(17
), pp. 3185
–3197
.8.
Kutta
, W. M.
, 1902
, “Auftriebskrafte in stromenden Flussigkeiten
,” Ill. Aeronaut. Mitt.
, 6
, pp. 133
–135
.9.
Milne-Thomson
, L. M.
, 1966
, Theoretical Aerodynamics
, Dover
, New York
.10.
Kelly
, S. D.
, and Tallapragada
, P.
, 2012
, “Symmetries and Constraints in Aquatic Propulsion Via Vortex Shedding
,” Ninth International Conference on Flow Dynamics
.11.
Kelly
, S. D.
, Fairchild
, M. J.
, Hassing
, P. M.
, and Tallapragada
, P.
, 2012
, “Proportional Heading Control for Planar Navigation: The Chaplygin Beanie and Fishlike Robotic Swimming
,” American Control Conference
, pp. 4885
–4890
.12.
Kai
, T.
, and Kimura
, H.
, 2006
, “Theoretical Analysis of Affine Constraints on a Configuration Manifold—Part I: Integrability and Nonintegrability Conditions for Affine Constraints and Foliation Structures of a Configuration Manifold
,” Trans. Soc. Instrum. Control Eng.
, 42
(3
), pp. 212
–221
.13.
Chaplygin
, S. A.
, 2008
, “On the Theory of the Motion of Nonholonomic Systems: The Reducing-Multiplier Theorem
,” Regular Chaotic Dyn.
, 13
(4
), pp. 369
–376
[Mat. Sb., 28(1), pp. 303–314 (1911)].14.
Neimark
, J. I.
, and Fufaev
, N. A.
, 1972
, Dynamics of Nonholonomic Systems
, (Translations of Mathematical Monographs, Vol. 33), AMS
, Providence, RI
.15.
Bloch
, A. M.
, 2003
, Nonholonomic Mechanics and Control
, Springer-Verlag
, New York
.16.
Fedonyuk
, V.
, and Tallapragada
, P.
, 2015
, “The Stick–Slip Motion of a Chaplygin Sleigh With a Piecewise Smooth Nonholonomic Constraint
,” ASME
Paper No. DSCC2015-9820. 17.
Fedonyuk
, V.
, and Tallapragada
, P.
, “Stick-Slip Motion of the Chaplygin Sleigh With a Piecewise Smooth Nonholonomic Constraint
,” ASME J. Comput. Nonlinear Dyn.
(submitted).18.
Ruina
, A.
, 1998
, “Nonholonomic Stability Aspects of Piecewise Nonholonomic Systems
,” Rep. Math. Phys.
, 42
, pp. 91
–100
.19.
Osborne
, J. M.
, and Zenkov
, D. V.
, 2005
, “Steering the Chaplygin Sleigh by a Moving Mass
,” American Control Conference
.20.
Lamb
, H.
, 1945
, Hydrodynamics
, Dover
, New York
.21.
Milne-Thomson
, L. M.
, 1996
, Theoretical Hydrodynamics
, Dover
, New York
.22.
Shashikanth
, B. N.
, 2005
, “Poisson Brackets for the Dynamically Interacting System of a 2D Rigid Cylinder and N Point Vortices: The Case of Arbitrary Smooth Cylinder Shapes
,” Regular Chaotic Dyn.
, 10
(1
), pp. 1
–14
.23.
Xiong
, H.
, 2007
, “Geometric Mechanics, Ideal Hydrodynamics, and the Locomotion of Planar Shape-Changing Aquatic Vehicles
,” Ph.D. thesis
, University of Illinois at Urbana–Champaign, Champaign, IL.24.
Pollard
, B.
, and Tallapragada
, P.
, “An Aquatic Robot Propelled by an Internal Rotor
,” IEEE/ASME Trans. Mechatronics
(submitted).Copyright © 2017 by ASME
You do not currently have access to this content.