This paper introduces a new parallel co-simulation method to study vehicle-track dynamic interactions. The new method uses the transmission control protocol/internet protocol (TCP/IP) to enable co-simulation between a detailed in-house track dynamics simulation package and a commercial vehicle system dynamics simulation package. The exchanged information are wheel-rail contact forces and rail kinematics. Then, the message passing interface (MPI) technique is used to enable the model to process track dynamics simulations and vehicle dynamics simulations in parallel. The parallel co-simulation technique has multiple advantages: (1) access to the advantages of both in-house and commercial simulation packages; (2) new model parts can be easily added in as new parallel processes; and (3) saving of computing time. The original track model used in this paper was significantly improved in terms of computing speed. The improved model is now more than ten times faster than the original model. Two simulations were conducted to model a locomotive negotiating a section of track with and without unsupported sleepers. The results show that the vertical rail deflections, wheel-rail contact forces and vehicle suspension forces are evidently larger when unsupported sleepers are present. The simulations have demonstrated the effectiveness of the proposed parallel co-simulation method for vehicle-track dynamic interaction studies.

References

1.
Zhai
,
W.
,
Wang
,
K.
, and
Cai
,
C.
,
2009
, “
Fundamentals of Vehicle–Track Coupled Dynamics
,”
Veh. Syst. Dyn.
,
47
(
11
), pp.
1349
1376
.
2.
Dahlberg
,
T.
,
2006
, “
Track Issue
,”
Handbook of Railway Vehicle Dynamics
,
Iwnicki
,
S.
, ed.,
Taylor & Francis
,
London
, Chap. 9.
3.
Tanabe
,
M.
,
Sogabe
,
M.
,
Wakui
,
H.
,
Matsumoto
,
M.
, and
Tanabe
,
Y.
,
2016
, “
Exact Time Integration for Dynamic Interaction of High-Speed Train and Railway Structure Including Derailment During an Earthquake
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
3
), p.
031004
.
4.
Zhai
,
W.
,
Xia
,
H.
,
Cai
,
C.
,
Gao
,
M.
,
Li
,
X.
,
Guo
,
X.
,
Zhang
,
N.
, and
Wang
,
K.
,
2013
, “
High-Speed Train–Track–Bridge Dynamic Interactions—Part I: Theoretical Model and Numerical Simulation
,”
Int. J. Rail Transp.
,
1
(
1–2
), pp.
3
24
.
5.
Zhai
,
W.
,
Wang
,
S.
,
Zhang
,
N.
,
Gao
,
M.
,
Xia
,
H.
,
Cai
,
C.
, and
Zhao
,
C.
,
2013
, “
High-Speed Train–Track–Bridge Dynamic Interactions—Part II: Experimental Validation and Engineering Application
,”
Int. J. Rail Transp.
,
1
(
1–2
), pp.
25
41
.
6.
Grassie
,
S.
,
Gregory
,
R.
,
Harrison
,
S.
, and
Johnson
,
K.
,
1982
, “
The Dynamic Response of Railway Track to High Frequency Vertical Excitation
,”
J. Mech. Eng. Sci.
,
24
(
2
), pp.
77
90
.
7.
Thompson
,
D.
, and
Jones
,
C.
,
2000
, “
A Review of the Modelling of Wheel/Rail Noise Generation
,”
J. Sound Vib.
,
231
(
3
), pp.
519
536
.
8.
Heckl
,
M.
,
2002
, “
Coupled Waves on a Periodically Supported Timoshenko Beam
,”
J. Sound Vib.
,
252
(
5
), pp.
849
882
.
9.
Zhai
,
W.
, and
Wang
,
K.
,
2010
, “
Lateral Hunting Stability of Railway Vehicles Running on Elastic Track Structures
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
4
), p.
041009
.
10.
Nielsen
,
J.
, and
Igelan
,
A.
,
1995
, “
Vertical Dynamic Interaction Between Train and Track—Influence of Wheel and Track Imperfections
,”
J. Sound Vib.
,
187
(
5
), pp.
825
839
.
11.
Sun
,
Y.
, and
Dhanasekar
,
M.
,
2002
, “
A Dynamic Model for the Vertical Interaction of the Rail Track and Wagon System
,”
Int. J. Solids Struct.
,
39
(
5
), pp.
1337
1359
.
12.
Baeza
,
L.
, and
Ouyang
,
H.
,
2011
, “
A Railway Track Dynamics Model Based on Modal Substructuring and a Cyclic Boundary Condition
,”
J. Sound Vib.
,
330
(
1
), pp.
75
86
.
13.
Yang
,
S.
,
2009
, “
Enhancement of the Finite-Element Method for the Analysis of Vertical Train–Track Interactions
,”
Proc. Inst. Mech. Eng., Part F
,
223
(
6
), pp.
609
620
.
14.
Zhang
,
J.
,
Gao
,
Q.
,
Tan
,
S.
, and
Zhong
,
W.
,
2012
, “
A Precise Integration Method for Solving Coupled Vehicle—Track Dynamics With Nonlinear Wheel—Rail Contact
,”
J. Sound Vib.
,
331
(
21
), pp.
4763
4773
.
15.
Martínez-Casas
,
J.
,
Giner-Navarro
,
J.
,
Baeza
,
L.
, and
Denia
,
F.
,
2017
, “
Improved Railway Wheelset-Track Interaction Model in the High-Frequency Domain
,”
J. Comput. Appl. Math.
,
309
(
1
), pp.
642
653
.
16.
Ferrara
,
R.
,
Leonardi
,
G.
, and
Jourdan
,
F.
,
2013
, “
A Contact-Area Model for Rail-Pads Connections in 2-D Simulations: Sensitivity Analysis of Train-Induced Vibrations
,”
Veh. Syst. Dyn.
,
51
(
9
), pp.
1342
1362
.
17.
Nilsson
,
C.
,
Jones
,
C.
,
Thompson
,
D.
, and
Ryue
,
J.
,
2009
, “
A Waveguide Finite Element and Boundary Element Approach to Calculating the Sound Radiated by Railway and Tram Rails
,”
J. Sound Vib.
,
321
(
3–5
), pp.
813
836
.
18.
Gómez
,
J.
,
Vadillo
,
E.
, and
Santamaría
,
J.
,
2006
, “
A Comprehensive Track Model for the Improvement of Corrugation Models
,”
J. Sound Vib.
,
293
(
3–5
), pp.
522
534
.
19.
Koro
,
K.
,
Abe
,
K.
,
Ishida
,
M.
, and
Suzuki
,
T.
,
2004
, “
Timoshenko Beam Finite Element for Vehicle-Track Vibration Analysis and Its Application to Jointed Railway Track
,”
Proc. Inst. Mech. Eng., Part F
,
218
(
2
), pp.
159
172
.
20.
Gry
,
L.
,
1996
, “
Dynamic Modelling of Railway Track Based on Wave Propagation
,”
J. Sound Vib.
,
195
(
3
), pp.
477
505
.
21.
Dong
,
R.
,
Sankar
,
S.
, and
Dukkipati
,
R.
,
1994
, “
A Finite Element Model of Railway Track and Its Application to the Wheel Flat Problem
,”
Proc. Inst. Mech. Eng., Part F
,
208
(
1
), pp.
61
72
.
22.
Knothe
,
K.
, and
Grassie
,
S.
,
1993
, “
Modelling of Railway Track and Vehicle/Track Interaction at High Frequencies
,”
Veh. Syst. Dyn.
,
22
(
3–4
), pp.
209
262
.
23.
Popp
,
K.
,
Kruse
,
H.
, and
Kaiser
,
I.
,
1999
, “
Vehicle-Track Dynamics in the Mid-Frequency Range
,”
Veh. Syst. Dyn.
,
31
(
5–6
), pp.
423
464
.
24.
Blanco
,
B.
,
2017
, “Railway Track Dynamic Modelling,”
Licentiate thesis
, KTH, Stockholm, Sweden.http://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A1096621&dswid=-8466
25.
Meli
,
E.
, and
Pugi
,
L.
,
2013
, “
Preliminary Development, Simulation and Validation of a Weigh in Motion System for Railway Vehicles
,”
Meccanica
,
48
(
10
), pp.
2541
2565
.
26.
Sugiyama
,
H.
, and
Suda
,
Y.
,
2009
, “
On the Contact Search Algorithms for Wheel/Rail Contact Problems
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
4
), p.
041001
.
27.
Sugiyama
,
H.
, and
Suda
,
Y.
,
2008
, “
Wheel/Rail Two-Point Contact Geometry With Back-of-Flange Contact
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
1
), p.
011010
.
28.
Piotrowski
,
J.
, and
Kik
,
W.
,
2008
, “
A Simplified Model of Wheel/Rail Contact Mechanics for Non-Hertzian Problems and Its Application in Rail Vehicle Dynamic Simulations
,”
Veh. Syst. Dyn.
,
46
(
1–2
), pp.
27
48
.
29.
Afshari
,
A.
, and
Shabana
,
A.
,
2010
, “
Directions of the Tangential Creep Forces in Railroad Vehicle Dynamics
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
2
), p.
021006
.
30.
Kalker
,
J.
,
1991
, “
Wheel-Rail Rolling Contact Theory
,”
Wear
,
144
(
1–2
), pp.
243
261
.
31.
Kalker
,
J.
,
1982
, “
A Fast Algorithm for the Simplified Theory of Rolling Contact
,”
Veh. Syst. Dyn.
,
11
(
1
), pp.
1
13
.
32.
Polach
,
O.
,
2005
, “
Creep Forces in Simulations of Traction Vehicles Running on Adhesion Limit
,”
Wear
,
258
(
7–8
), pp.
992
1000
.
33.
Ju
,
S.
,
2015
, “
Study of Train Derailments Caused by Damage to Suspension Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
3
), p.
031008
.
34.
Pasquale
,
G.
,
Somà
,
A.
, and
Zampieri
,
N.
,
2012
, “
Design, Simulation, and Testing of Energy Harvesters With Magnetic Suspensions for the Generation of Electricity From Freight Train Vibrations
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
4
), p.
041011
.
35.
Wu
,
Q.
,
Cole
,
C.
,
Spiryagin
,
M.
, and
Sun
,
Y. Q.
,
2014
, “
A Review of Dynamics Modelling of Friction Wedge Suspensions
,”
Veh. Syst. Dyn.
,
52
(
11
), pp.
1389
1415
.
36.
Bruni
,
S.
,
Vinolas
,
J.
,
Berg
,
M.
,
Polach
,
O.
, and
Stichel
,
S.
,
2011
, “
Modelling of Suspension Components in a Rail Vehicle Dynamics Context
,”
Veh. Syst. Dyn.
,
49
(
7
), pp.
1021
1072
.
37.
Rodikov
,
A.
,
Pogorelov
,
D.
,
Mikheev
,
G.
,
Kovalev
,
R.
,
Lei
,
Q.
, and
Wang
,
Y.
,
2016
, “
Computer Simulation of Train-Track-Bridge Interaction
,”
Conference on Railway Excellence
, Melbourne, Australia, May 16–18, pp. 1–7.
38.
Li
,
Y.
,
Xu
,
X.
,
Zhou
,
Y.
,
Cai
,
C.
, and
Qin
,
J.
,
2016
, “
An Interactive Method for the Analysis of the Simulation of Vehicle–Bridge Coupling Vibration Using ANSYS and SIMPACK
,”
Proc. Inst. Mech. Eng., Part F
, epub.
39.
Sun
,
Y.
,
Dhanasekar
,
M.
, and
Roach
,
D.
,
2003
, “
A Three-Dimensional Model for the Lateral and Vertical Dynamics of Wagon-Track Systems
,”
Proc. Inst. Mech. Eng., Part F
,
217
(
1
), pp.
31
45
.
40.
Spiryagin
,
M.
,
Wolfs
,
P.
,
Cole
,
C.
,
Spiryagin
,
V.
,
Sun
,
Y. Q.
, and
McSweeney
,
T.
,
2016
,
Design and Simulation of Heavy Haul Locomotives and Trains
,
CRC Press
,
Boca Raton, FL
.
41.
Spiryagin
,
M.
,
Simson
,
S.
,
Cole
,
C.
, and
Persson
,
I.
,
2012
, “
Co-Simulation of a Mechatronic System Using Gensys and Simulink
,”
Veh. Syst. Dyn.
,
50
(
3
), pp.
495
507
.
42.
Wu
,
Q.
,
Spiryagin
,
M.
,
Cole
,
C.
, and
Sun
,
Y. Q.
,
2017
, “
Introducing Wheel-Rail Adhesion Control Into Longitudinal Train Dynamics
,”
Int. J. Heavy Veh. Syst.
, accepted.
43.
Burgelman
,
N.
,
Sichani
,
M.
,
Enblom
,
R.
,
Berg
,
M.
,
Li
,
Z.
, and
Dollevoet
,
R.
,
2015
, “
Influence of Wheel–Rail Contact Modelling on Vehicle Dynamic Simulation
,”
Veh. Syst. Dyn.
,
53
(
8
), pp.
1190
1203
.
44.
Spiryagin
,
M.
,
Wu
,
Q.
,
Duan
,
K.
,
Cole
,
K.
,
Sun
,
Y.
, and
Persson
,
I.
,
2017
, “
Implementation of a Wheel–Rail Temperature Model for Locomotive Traction Studies
,”
Int. J. Rail Transp.
,
5
(
1
), pp.
1
15
.
45.
D'Adamio
,
P.
,
Escalona
,
J.
,
Galardi
,
E.
,
Meli
,
E.
,
Pugi
,
L.
, and
Rindi
,
A.
,
2016
, “
Real Time Modelling of a Railway Multibody Vehicle: Application and Validation on a Scaled Railway Vehicle
,” Third International Conference on Railway Technology: Research, Development and Maintenance, Sardinia, Italy, Apr. 5–8, Paper No. 259.
46.
Negrut
,
D.
,
Serban
,
R.
,
Mazhar
,
H.
, and
Heyn
,
T.
,
2014
, “
Parallel Computing in Multibody System Dynamics: Why, When and How
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
4
), p.
041007
.
47.
Wu
,
Q.
,
Cole
,
C.
, and
Spiryagin
,
M.
,
2016
, “
Parallel Computing Enables Whole-Trip Train Dynamics Optimizations
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
4
), p.
044503
.
48.
Wu
,
Q.
,
Spiryagin
,
M.
, and
Cole
,
C.
,
2017
, “
Parallel Computing Scheme for Three-Dimensional Long Train System Dynamics
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
4
), p.
044502
.
49.
Wu
,
Q.
,
Spiryagin
,
M.
, and
Cole
,
C.
,
2016
, “
Longitudinal Train Dynamics: An Overview
,”
Veh. Syst. Dyn.
,
54
(
12
), pp.
1688
1714
.
50.
Spiryagin
,
M.
,
Wolfs
,
P.
,
Szanto
,
F.
, and
Cole
,
C.
,
2015
, “
Simplified and Advanced Modelling of Traction Control Systems of Heavy-Haul Locomotives
,”
Veh. Syst. Dyn.
,
53
(
5
), pp.
672
691
.
51.
Wu
,
Q.
, and
Cole
,
C.
,
2015
, “
Computing Schemes for Longitudinal Train Dynamics: Sequential, Parallel and Hybrid
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
6
), p.
064502
.
52.
Sun
,
Y.
,
Spiryagin
,
M.
, and
Cole
,
C.
,
2017
, “
Simulation of Wheel-Rail Dynamics Due to Track Ballast Voids
,”
25th International Symposium on Dynamics of Vehicles on Roads and Tracks
, Rockhampton, Australia, Aug. 14–18, pp. 1–6.
53.
Zhang
,
S.
,
Xiao
,
X.
,
Wen
,
Z.
, and
Jin
,
X.
,
2008
, “
Effect of Unsupported Sleepers on Wheel/Rail Normal Load
,”
Soil Dyn. Earthquake Eng.
,
28
(
8
), pp.
662
673
.
54.
Zakeri
,
J.
,
Fattahi
,
M.
, and
Ghanimoghadam
,
M.
,
2015
, “
Influence of Unsupported and Partially Supported Sleepers on Dynamic Responses of Train-Track Interaction
,”
J. Mech. Sci. Technol.
,
29
(
6
), pp.
2289
2295
.
55.
Lundqvist
,
A.
, and
Dahlberg
,
T.
,
2005
, “
Load Impact on Railway Track Due to Unsupported Sleepers
,”
Proc. Inst. Mech. Eng., Part F
,
219
(
2
), pp.
67
77
.
56.
Recuero
,
A.
,
Escalona
,
J.
, and
Shabana
,
A.
,
2011
, “
Finite-Element Analysis of Unsupported Sleepers Using Three-Dimensional Wheel–Rail Contact Formulation
,”
Proc. Inst. Mech. Eng., Part K
,
225
(
2
), pp.
153
165
.
57.
Zhu
,
J.
,
Thompson
,
D.
, and
Jones
,
C.
,
2011
, “Effect Unsupported Sleepers Dynamic Behaviour a Railway Track,” Veh. Syst. Dyn., 49(9), pp.
1389
1408
.
You do not currently have access to this content.