Abstract

In this work, we investigate the appearance of postresonance backward whirl (Po-BW) using the model of a rotor with a breathing crack. This phenomenon could be employed as an indicator of crack and bearing damage in rotor systems that undergo recurrent passage through critical forward whirl rotational speed during startup and coast down operations. The finite element (FE) model is used to develop the linear-time-varying equations of motion of the considered accelerating cracked rotor. The whirl response is obtained by direct numerical integration. In addition, the effect of bearing anisotropy on Po-BW excitation is investigated. It is found that the appearance of Po-BW zones is significantly affected by the depth of the crack, angular acceleration rate, anisotropy of bearings, and the orientation of the unbalance force vector with respect to the crack opening direction. The full spectrum analysis (FSA) is also employed and found to be an efficient tool for identifying the Po-BW zones of rotational speeds in the whirl response.

References

1.
Papadopoulos
,
C. A.
,
2008
, “
The Strain Energy Release Approach for Modeling Cracks in Rotors: A State of the Art Review
,”
Mech. Syst. Signal Process.
,
22
(
4
), pp.
763
789
.10.1016/j.ymssp.2007.11.009
2.
Gasch
,
R.
,
1976
, “
Dynamic Behaviour of a Simple Rotor With a Cross Sectional Crack
,”
IMechE Conference on Vibrations in Rotating Machinery
, Cambridge, UK, Sept. 15–17, pp.
123
128
.
3.
Jun
,
O. S.
,
Eun
,
H. J.
,
Earmme
,
Y. Y.
, and
Lee
,
C. W.
,
1992
, “
Modelling and Vibration Analysis of a Simple Rotor With a Breathing Crack
,”
J. Sound Vib.
,
155
(
2
), pp.
273
290
.10.1016/0022-460X(92)90511-U
4.
Mayes
,
I.
, and
Davies
,
W. D.
,
1976
, “
The Vibrational Behavior of a Rotating Shaft System Containing a Transverse Crack
,”
IMechE Conference on Vibrations in Rotating Machinery
, Cambridge, UK, Sept. 15–17, pp.
53
64
.
5.
Gayen
,
D.
,
Chakraborty
,
D.
, and
Tiwari
,
R.
,
2017
, “
Finite Element Analysis for a Functionally Graded Rotating Shaft With Multiple Breathing Cracks
,”
Int. J. Mech. Sci.
,
134
, pp.
411
423
.10.1016/j.ijmecsci.2017.10.027
6.
Cheng
,
L.
,
Li
,
N.
,
Chen
,
X. F.
, and
He
,
Z. J.
,
2011
, “
The Influence of Crack Breathing and Imbalance Orientation Angle on the Characteristics of the Critical Speed of a Cracked Rotor
,”
J. Sound Vib.
,
330
(
9
), pp.
2031
2048
.10.1016/j.jsv.2010.11.012
7.
Al-Shudeifat
,
M. A.
,
Butcher
,
E. A.
, and
Stern
,
C. R.
,
2010
, “
General Harmonic Balance Solution of a Cracked Rotor-Bearing-Disk System for Harmonic and Sub-Harmonic Analysis: Analytical and Experimental Approach
,”
Int. J. Eng. Sci.
,
48
(
10
), pp.
921
935
.10.1016/j.ijengsci.2010.05.012
8.
Sinou
,
J. J.
,
2008
, “
Detection of Cracks in Rotor Based on the 2× and 3× Super-Harmonic Frequency Components and the Crack-Unbalance Interactions
,”
Commun. Nonlinear Sci. Numer. Simul.
,
13
(
9
), pp.
2024
2040
.10.1016/j.cnsns.2007.04.008
9.
Sinou
,
J.-J.
, and
Lees
,
A. W.
,
2007
, “
A Non-Linear Study of a Cracked Rotor
,”
Eur. J. Mech. A/Solids
,
26
(
1
), pp.
152
170
.10.1016/j.euromechsol.2006.04.002
10.
Sinou
,
J. J.
,
2007
, “
Effects of a Crack on the Stability of a Non-Linear Rotor System
,”
Int. J. Non. Linear. Mech.
,
42
(
7
), pp.
959
972
.10.1016/j.ijnonlinmec.2007.04.002
11.
Sinou
,
J. J.
, and
Lees
,
A. W.
,
2005
, “
The Influence of Cracks in Rotating Shafts
,”
J. Sound Vib.
,
285
(
4–5
), pp.
1015
1037
.10.1016/j.jsv.2004.09.008
12.
Khorrami
,
H.
,
Rakheja
,
S.
, and
Sedaghati
,
R.
,
2017
, “
Vibration Behavior of a Two-Crack Shaft in a Rotor Disc-Bearing System
,”
Mech. Mach. Theory
,
113
, pp.
67
84
.10.1016/j.mechmachtheory.2017.03.006
13.
Gómez
,
M. J.
,
Castejón
,
C.
, and
García-Prada
,
J. C.
,
2016
, “
Crack Detection in Rotating Shafts Based on 3× Energy: Analytical and Experimental Analyses
,”
Mech. Mach. Theory
,
96
, pp.
94
106
.10.1016/j.mechmachtheory.2015.09.009
14.
Cavalini
,
A. A.
, Jr
,
Sanches
,
L.
,
Bachschmid
,
N.
, and
Steffen
,
V.
, Jr
,
2016
, “
Crack Identification for Rotating Machines Based on a Nonlinear Approach
,”
Mech. Syst. Signal Process
,
79
, pp.
72
85
.10.1016/j.ymssp.2016.02.041
15.
Kulesza
,
Z.
, and
Sawicki
,
J. T.
,
2015
, “
Damping by Parametric Excitation in a Set of Reduced-Order Cracked Rotor Systems
,”
J. Sound Vib.
,
354
, pp.
167
179
.10.1016/j.jsv.2015.06.001
16.
Kulesza
,
Z.
,
2014
, “
Dynamic Behavior of Cracked Rotor Subjected to Multisine Excitation
,”
J. Sound Vib.
,
333
(
5
), pp.
1369
1378
.10.1016/j.jsv.2013.10.031
17.
Han
,
D. J.
,
2007
, “
Vibration Analysis of Periodically Time-Varying Rotor System With Transverse Crack
,”
Mech. Syst. Signal Process.
,
21
(
7
), pp.
2857
2879
.10.1016/j.ymssp.2007.02.006
18.
Sinou
,
J. J.
, and
Faverjon
,
B.
,
2012
, “
The Vibration Signature of Chordal Cracks in a Rotor System Including Uncertainties
,”
J. Sound Vib.
,
331
(
1
), pp.
138
154
.10.1016/j.jsv.2011.08.001
19.
Sawicki
,
J. T.
,
Friswell
,
M. I.
,
Kulesza
,
Z.
,
Wroblewski
,
A.
, and
Lekki
,
J. D.
,
2011
, “
Detecting Cracked Rotors Using Auxiliary Harmonic Excitation
,”
J. Sound Vib.
,
330
(
7
), pp.
1365
1381
.10.1016/j.jsv.2010.10.006
20.
Toni Liong
,
R.
, and
Proppe
,
C.
,
2013
, “
Application of the Cohesive Zone Model for the Evaluation of Stiffness Losses in a Rotor With a Transverse Breathing Crack
,”
J. Sound Vib.
,
332
(
8
), pp.
2098
2110
.10.1016/j.jsv.2012.11.032
21.
Ricci
,
R.
, and
Pennacchi
,
P.
,
2012
, “
Discussion of the Dynamic Stability of a Multi-Degree-of-Freedom Rotor System Affected by a Transverse Crack
,”
Mech. Mach. Theory
,
58
, pp.
82
100
.10.1016/j.mechmachtheory.2012.08.002
22.
Nelson
,
H. D.
, and
Nataraj
,
C.
,
1986
, “
The Dynamics of a Rotor System With a Cracked Shaft
,”
ASME J. Vib. Acoust.
,
108
(
2
), pp.
189
196
.10.1115/1.3269321
23.
Guo
,
C.
,
Al-Shudeifat
,
M. A.
,
Yan
,
J.
,
Bergman
,
L. A.
,
McFarland
,
D. M.
, and
Butcher
,
E. A.
,
2013
, “
Stability Analysis for Transverse Breathing Cracks in Rotor Systems
,”
Eur. J. Mech. A/Solids
,
42
, pp.
27
34
.10.1016/j.euromechsol.2013.04.001
24.
Guo
,
C.
,
Al-Shudeifat
,
M. A.
,
Yan
,
J.
,
Bergman
,
L. A.
,
McFarland
,
D. M.
, and
Butcher
,
E. A.
,
2013
, “
Application of Empirical Mode Decomposition to a Jeffcott Rotor With a Breathing Crack
,”
J. Sound Vib.
,
332
(
16
), pp.
3881
3892
.10.1016/j.jsv.2013.02.031
25.
Al-Shudeifat
,
M. A.
, and
Butcher
,
E. A.
,
2011
, “
New Breathing Functions for the Transverse Breathing Crack of the Cracked Rotor System: Approach for Critical and Subcritical Harmonic Analysis
,”
J. Sound Vib.
,
330
(
3
), pp.
526
544
.10.1016/j.jsv.2010.08.022
26.
Jun
,
O. S.
, and
Gadala
,
M. S.
,
2008
, “
Dynamic Behavior Analysis of Cracked Rotor
,”
J. Sound Vib.
,
309
(
1–2
), pp.
210
245
.10.1016/j.jsv.2007.06.065
27.
Darpe
,
A. K.
,
Gupta
,
K.
, and
Chawla
,
A.
,
2004
, “
Transient Response and Breathing Behaviour of a Cracked Jeffcott Rotor
,”
J. Sound Vib.
,
272
(
1–2
), pp.
207
243
.10.1016/S0022-460X(03)00327-4
28.
Bachschmid
,
N.
,
Pennacchi
,
P.
, and
Tanzi
,
E.
,
2008
, “
Some Remarks on Breathing Mechanism, on Non-Linear Effects and on Slant and Helicoidal Cracks
,”
Mech. Syst. Signal Process.
,
22
(
4
), pp.
879
904
.10.1016/j.ymssp.2007.11.007
29.
Han
,
Q.
, and
Chu
,
F.
,
2012
, “
The Effect of Transverse Crack Upon Parametric Instability of a Rotor-Bearing System With an Asymmetric Disk
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
12
), pp.
5189
5200
.10.1016/j.cnsns.2012.03.037
30.
Nembhard
,
A. D.
,
Sinha
,
J. K.
, and
Yunusa-Kaltungo
,
A.
,
2015
, “
Experimental Observations in the Shaft Orbits of Relatively Flexible Machines With Different Rotor Related Faults
,”
Meas. J. Int. Meas. Confed.
,
75
, pp.
320
337
.10.1016/j.measurement.2015.08.007
31.
Al-Shudeifat
,
M. A.
,
2019
, “
New Backward Whirl Phenomena in Intact and Cracked Rotor Systems
,”
J. Sound Vib.
,
443
, pp.
124
138
.10.1016/j.jsv.2018.11.038
32.
Al-Shudeifat
,
M. A.
,
Al Hosani
,
H.
,
Saeed
,
A. S.
, and
Balawi
,
S.
,
2019
, “
Effect of Unbalance Force Vector Orientation on the Whirl Response of Cracked Rotors
,”
ASME J. Vib. Acoust.
,
141
(
2
), p.
021001
.10.1115/1.4041462
33.
Alhammadi
,
F. K.
,
Al-Shudeifat
,
M. A.
, and
Shiryayev
,
O.
,
2018
, “
Effect of Angular Acceleration and Unbalance Force Orientation on the Backward Whirl in Cracked Rotors
,”
ASME
Paper No. IMECE2018-87476.10.1115/IMECE2018-87476
34.
Goldman
,
P.
, and
Muszynska
,
A.
,
1999
, “
Application of Full Spectrum to Rotating Machinery Diagnostics
,”
Orbit
,
20
(
1
), pp.
17
21
.
35.
Tuma
,
J.
, and
Bilos
,
J.
,
2004
, “
Full Spectrum Analysis in Journal Bearing Diagnostics
,”Proceedings of the International Carpathian Control Conference, Velke Karlovice, Czech Republic, May 28–30, accessed Feb. 24, 2020, http://homel.vsb.cz/∼tum52/publications/TumaPaper_ICCC2004.pdf
36.
Patel
,
T. H.
, and
Darpe
,
A. K.
,
2011
, “
Application of Full Spectrum Analysis for Rotor Fault Diagnosis
,”
IUTAM Symposium on Emerging Trends in Rotor Dynamics
,
K.
Gupta
, ed.,
Springer
,
Dordrecht, The Netherlands
, Mar. 23–26, pp.
535
545
.
37.
Wu
,
X.
,
Naugle
,
C.
, and
Meagher
,
J.
,
2016
, “
A Full Spectrum Analysis Methodology Applied to an Anisotropic Overhung Rotor
,”
J. Appl. Mech. Eng.
,
5
(
6
), pp.
1
10
.10.4172/2168-9873.1000232
38.
Alzarooni
,
T.
,
Al-Shudeifat
,
M. A.
,
Shiryayev
,
O.
, and
Nataraj
,
C.
,
2019
, “
On Backward Whirl Excitation in Linear Time-Variant Intact and Cracked Rotor Systems
,”
15th International Conference DSTA 2019: Dynamical Systems Theory and Applications, Applicable Solutions in Non-Linear Dynamical Systems
, Vol.
2
, Lodz, Poland, Dec. 2–5, pp.
25
36
.
39.
Friswell
,
M. I.
,
Penny
,
J. E. T.
,
Garvey
,
S. D.
, and
Lees
,
A. W.
,
2010
,
Dynamics of Rotating Machines
,
Cambridge University Press
,
Cambridge, UK
.
40.
Zapoměl
,
J.
, and
Ferfecki
,
P.
,
2011
, “
A Computational Investigation on the Reducing Lateral vibration of rotors With Rolling-Element Bearings Passing Through Critical Speeds by Means of Tuning the Stiffness of the System Supports
,”
Mech. Mach. Theory
,
46
(
5
), pp.
707
724
.10.1016/j.mechmachtheory.2010.12.006
41.
Sekhar
,
A. S.
, and
Kumar Dey
,
J.
,
2000
, “
Effects of Cracks on Rotor System Instability
,”
Mech. Mach. Theory
,
35
(
12
), pp.
1657
1674
.10.1016/S0094-114X(00)00016-1
42.
Zapoměl
,
J.
, and
Ferfecki
,
P.
,
2011
, “
A Computational Investigation of the Disk-Housing Impacts of Accelerating Rotors Supported by Hydrodynamic Bearings
,”
ASME J. Appl. Mech.
,
78
(
2
), p.
021001
.10.1115/1.4002527
43.
Fu
,
C.
,
Ren
,
X.
,
Yang
,
Y.
,
Xia
,
Y.
, and
Deng
,
W.
,
2018
, “
An Interval Precise Integration Method for Transient Unbalance Response Analysis of Rotor System With Uncertainty
,”
Mech. Syst. Signal Process.
,
107
, pp.
137
148
.10.1016/j.ymssp.2018.01.031
44.
Guo
,
D.
, and
Peng
,
Z. K.
,
2007
, “
Vibration Analysis of a Cracked Rotor Using Hilbert-Huang Transform
,”
Mech. Syst. Signal Process.
,
21
(
8
), pp.
3030
3041
.10.1016/j.ymssp.2007.05.004
45.
Sekhar
,
A. S.
,
Mohanty
,
A. R.
, and
Prabhakar
,
S.
,
2005
, “
Vibrations of Cracked Rotor System: Transverse Crack Versus Slant Crack
,”
J. Sound Vib.
,
279
(
3–5
), pp.
1203
1217
.10.1016/j.jsv.2004.01.011
46.
Prabhakar
,
S.
,
Sekhar
,
A. S.
, and
Mohanty
,
A. R.
,
2002
, “
Crack Versus Coupling Misalignment in a Transient Rotor System
,”
J. Sound Vib.
,
256
(
4
), pp.
773
786
.10.1006/jsvi.2001.4225
47.
Prabhakar
,
S.
,
Sekhar
,
A. S.
, and
Mohanty
,
A. R.
,
2002
, “
Transient Lateral Analysis of a Slant-Cracked Rotor Passing Through Its Flexural Critical Speed
,”
Mech. Mach. Theory
,
37
(
9
), pp.
1007
1020
.10.1016/S0094-114X(02)00020-4
48.
Ramesh Babu
,
T.
,
Srikanth
,
S.
, and
Sekhar
,
A. S.
,
2008
, “
Hilbert-Huang Transform for Detection and Monitoring of Crack in a Transient Rotor
,”
Mech. Syst. Signal Process.
,
22
(
4
), pp.
905
914
.10.1016/j.ymssp.2007.10.010
49.
Al-Shudeifat
,
M. A.
,
2013
, “
On the Finite Element Modeling of the Asymmetric Cracked Rotor
,”
J. Sound Vib.
,
332
(
11
), pp.
2795
2807
.10.1016/j.jsv.2012.12.026
You do not currently have access to this content.