Abstract

A new technique for the analysis of dynamical equations with quasi-periodic coefficients (so-called quasi-periodic systems) is presented. The technique utilizes Lyapunov–Perron (L–P) transformation to reduce the linear part of a quasi-periodic system into the time-invariant form. A general approach for the construction of L–P transformations in the approximate form is suggested. First, the linear part of a quasi-periodic system is replaced by a periodic system with a “suitable” large principal period. Then, the state transition matrix (STM) of the periodic system is computed in the symbolic form using Floquet theory. Finally, Lyapunov–Floquet theorem is used to compute approximate L–P transformations. A two-frequency quasi-periodic system is studied and transformations are generated for stable, unstable, and critical cases. The effectiveness of these transformations is demonstrated by investigating three distinct quasi-periodic systems. They are applied to a forced linear quasi-periodic system to generate analytical solutions. It is found that the closeness of the analytical solutions to the exact solutions depends on the principal period of the periodic system. A general approach to obtain the stability bounds on linear quasi-periodic systems with stochastic perturbations is also discussed. Finally, the usefulness of approximate L–P transformations is presented by analyzing a nonlinear quasi-periodic system with cubic nonlinearity using time-dependent normal form (TDNF) theory. The closed-form solution generated is found to be in good agreement with the exact solution.

References

1.
Floquet
,
M. G.
,
1883
, “
Sur Les Équations Différentielles Linéaires à Coefficients Périodiques
,”
Ann. Sci. Éc. Norm. Supér.
,
12
(
2
), pp.
47
88
.10.24033/asens.220
2.
Grimshaw
,
R.
,
1990
,
Nonlinear Ordinary Differential Equations
,
Blackwell Scientific Publications
,
Massachusetts, MA
.
3.
Friedmann
,
P.
,
Hammond
,
C. E.
, and
Woo
,
T. H.
,
1977
, “
Efficient Numerical Treatment of Periodic Systems With Application to Stability Problems
,”
Int. J. Numer. Methods Eng.
,
11
(
7
), pp.
1117
1136
.10.1002/nme.1620110708
4.
Guttalu
,
R. S.
, and
Flashner
,
H.
,
1996
, “
Stability Analysis of Periodic Systems by Truncated Point Mappings
,”
J. Sound Vib.
,
189
(
1
), pp.
33
54
.10.1006/jsvi.1996.0004
5.
Hill
,
G. W.
,
1886
, “
On the Part of the Motion of the Lunar Perigee Which is a Function of the Mean Motions of the Sun and Moon
,”
Acta Math.
,
8
(
0
), pp.
1
36
.10.1007/BF02417081
6.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1979
,
Nonlinear Oscillations
,
Wiley
,
New York
.
7.
Sanders
,
J. A.
, and
Verhulst
,
F.
,
1985
,
Averaging Methods in Nonlinear Dynamical Systems
,
Springer
,
New York
.
8.
Sinha
,
S. C.
, and
Wu
,
D. H.
,
1991
, “
An Efficient Computational Scheme for the Analysis of Periodic Systems
,”
J. Sound Vib.
,
151
(
1
), pp.
91
117
.10.1016/0022-460X(91)90654-3
9.
Sinha
,
S. C.
, and
Butcher
,
E. A.
,
1997
, “
Symbolic Computation of Fundamental Solution Matrices for Time Periodic Dynamical Systems
,”
J. Sound Vib.
,
206
(
1
), pp.
61
85
.10.1006/jsvi.1997.1079
10.
Yakubovich
,
V. A.
, and
Starzhinski
,
V. M.
,
1975
,
Linear Differential Equations With Periodic Coefficients-Parts I
,
Wiley
,
New York
.
11.
Lukes
,
D. L.
,
1982
,
Differential Equations: Classical to Controlled
,
Academic Press
,
New York
.
12.
Sinha
,
S. C.
,
Pandiyan
,
R.
, and
Bibb
,
J. S.
,
1996
, “
Liapunov-Floquet Transformation: Computation and Applications to Periodic Systems
,”
ASME J. Vib. Acoust.
,
118
(
2
), pp.
209
219
.10.1115/1.2889651
13.
Davis
,
S. H.
, and
Rosenblat
,
S.
,
1980
, “
A Quasiperiodic Mathieu-Hill Equation
,”
SIAM J. Appl. Math.
,
38
(
1
), pp.
139
155
.10.1137/0138012
14.
Zounes
,
R. S.
, and
Rand
,
R. H.
,
1998
, “
Transition Curves for the Quasi-Periodic Mathieu Equation
,”
SIAM J. Appl. Math.
,
58
(
4
), pp.
1094
1115
.10.1137/S0036139996303877
15.
Sharma
,
A.
, and
Sinha
,
S. C.
,
2018
, “
An Approximate Analysis of Quasi-Periodic Systems Via Floquét Theory
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
2
), p.
021008
.10.1115/1.4037797
16.
Belhaq
,
M.
,
Guennoun
,
K.
, and
Houssni
,
M.
,
2002
, “
Asymptotic Solutions for a Damped Non-Linear Quasi-Periodic Mathieu Equation
,”
Int. J. Non-Linear Mech.
,
37
(
3
), pp.
445
460
.10.1016/S0020-7462(01)00020-8
17.
Abouhazim
,
N.
,
Rand
,
R. H.
, and
Belhaq
,
M.
,
2006
, “
The Damped Nonlinear Quasiperiodic Mathieu Equation Near 2:2:1 Resonance
,”
Nonlinear Dyn.
,
45
(
3–4
), pp.
237
247
.10.1007/s11071-006-2424-4
18.
Bogoljubov
,
N. N.
,
Mitropoliskii
,
J. A.
, and
Samoilenko
,
A. M.
,
1976
,
Methods of Accelerated Convergence in Nonlinear Mechanics
,
Hindustan Publishing Corporation
,
Delhi, India
.
19.
Murdock
,
J. A.
,
1978
, “
On the Floquet Problem for Quasiperiodic Systems
,”
Proc. Am. Math. Soc.
,
68
(
2
), pp.
179
184
.10.1090/S0002-9939-1978-0481275-8
20.
Johnson
,
R. A.
, and
Sell
,
G. R.
,
1981
, “
Smoothness of Spectral Bundles and Reducibility of Quasi-Periodic Linear Differential Systems
,”
J. Differ. Equations
,
41
(
2
), pp.
262
288
.10.1016/0022-0396(81)90062-0
21.
Jorba
,
À.
, and
Simó
,
C.
,
1992
, “
On the Reducibility of Linear Differential Equations With Quasi-Periodic Coefficients
,”
J. Differ. Equations
,
98
(
1
), pp.
111
124
.10.1016/0022-0396(92)90107-X
22.
Brogan
,
W. L.
,
1991
,
Modern Control Theory
,
Prentice Hall
, Upper Saddle River,
NJ
.
23.
Infante
,
E. F.
,
1968
, “
On the Stability of Some Linear Nonautonomous Random Systems
,”
ASME J. Appl. Mech.
,
35
(
1
), pp.
7
12
.10.1115/1.3601177
24.
Arnold
,
V. I.
,
1988
,
Geometric Methods in the Theory of Ordinary Differential Equations
,
Springer-Verlag
,
New York
.
You do not currently have access to this content.