Abstract

A hierarchical multiscale off-road mobility model is enhanced through the development of an artificial neural network (ANN) surrogate model that captures the complex material behavior of deformable terrain. By exploiting the learning capability of neural networks, the incremental stress and strain relationship of granular terrain is predicted by the ANN representative volume elements (RVE) at various states of the stress and strain. A systematic training procedure for ANN RVEs is developed with a virtual tire test rig model for producing training data from the discrete-element (DE) RVEs without relying on computationally intensive full vehicle simulations on deformable terrain. The ANN surrogate RVEs are then integrated into the hierarchical multiscale computational framework as a lower-scale model with the scalable parallel computing capability, while the macroscale terrain deformation is described by the finite element (FE) approach. It is demonstrated with several numerical examples that off-road vehicle mobility performances predicted by the proposed FE-ANN multiscale terrain model are in good agreement with those of the FE-DE multiscale model while achieving a substantial computational time reduction. The accuracy and robustness of the ANN RVE for fine-grain sand terrain are discussed for scenarios not considered in training datasets. Furthermore, a drawbar pull test simulation is presented with the ANN RVE developed with data in the cornering scenario and validated against the full-scale vehicle test data. The numerical results confirm the predictive ability of the FE-ANN multiscale terrain model for off-road mobility simulations.

References

1.
McCullough
,
M.
,
Jayakumar
,
P.
,
Dasch
,
J.
, and
Gorsich
,
D.
,
2017
, “
The Next Generation NATO Reference Mobility Model Development
,”
J. Terramechanics
,
73
, pp.
49
60
.10.1016/j.jterra.2017.06.002
2.
Mechergui
,
D.
, and
Jayakumar
,
P.
,
2020
, “
Efficient Generation of Accurate Mobility Maps Using Machine Learning Algorithms
,”
J. Terramechanics
,
88
, pp.
53
63
.10.1016/j.jterra.2019.12.002
3.
Wong
,
J. Y.
,
2008
,
Theory of Ground Vehicle
, 4th ed., Wiley,
Hoboken, NJ
.
4.
Smith
,
W.
, and
Peng
,
H.
,
2013
, “
Modeling of Wheel–Soil Interaction Over Rough Terrain Using The Discrete Element Method
,”
J. Terramechanics
,
50
(
5–6
), pp.
277
287
.10.1016/j.jterra.2013.09.002
5.
Negrut
,
D.
,
Serban
,
R.
,
Mazhar
,
H.
, and
Heyn
,
T.
,
2014
, “
Parallel Computing in Multibody System Dynamics: Why, When and How
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
4
), p.
041007
10.1115/1.4027313
6.
Recuero
,
A.
,
Serban
,
R.
,
Peterson
,
B.
,
Sugiyama
,
H.
,
Jayakumar
,
P.
, and
Negrut
,
D.
,
2017
, “
High-Fidelity Approach for Vehicle Mobility Simulation: Nonlinear Finite Element Tires Operating on Granular Material
,”
J. Terramechanics
,
72
, pp.
39
54
.10.1016/j.jterra.2017.04.002
7.
Wasfy
,
T. M.
,
Jayakumar
,
P.
,
Mechergui
,
D.
, and
Sanikommu
,
S.
,
2018
, “
Prediction of Vehicle Mobility on Large-Scale Soft-Soil Terrain Maps Using Physics-Based Simulation
,”
Int. J. Veh. Performance
,
4
(
4
), pp.
347
381
.10.1504/IJVP.2018.095753
8.
Serban
,
R.
,
Negrut
,
D.
,
Recuero
,
A.
, and
Jayakumar
,
P.
,
2019
, “
An Integrated Framework for High-Performance, High-Fidelity Simulation of Ground Vehicle-Tyre-Terrain Interaction
,”
Int. J. Veh. Performance
,
5
(
3
), pp.
233
259
.10.1504/IJVP.2019.100698
9.
Yamashita
,
H.
,
Chen
,
G.
,
Ruan
,
Y.
,
Jayakumar
,
P.
, and
Sugiyama
,
H.
,
2019
, “
Hierarchical Multiscale Modeling of Tire-Soil Interaction for Off-Road Mobility Simulation
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
6
), p.
061007-1-11
10.1115/1.4042510
10.
Yamashita
,
H.
,
Chen
,
G.
,
Ruan
,
Y.
,
Jayakumar
,
P.
, and
Sugiyama
,
H.
,
2020
, “
Parallelized Multiscale Off-Road Vehicle Mobility Simulation Algorithm and Full-Scale Vehicle Validation
,”
ASME J. Comput. Nonlinear Dyn.
,
15
(
9
), p.
091007-1-14
10.1115/1.4046666
11.
Guo
,
N.
, and
Zhao
,
J.
,
2014
, “
A Coupled FEM/DEM Approach for Hierarchical Multiscale Modeling of Granular Media
,”
Int. J. Numer. Methods Eng.
,
99
(
11
), pp.
789
818
.10.1002/nme.4702
12.
Liu
,
Y.
,
Sun
,
W. C.
,
Yuan
,
Z.
, and
Fish
,
J.
,
2016
, “
A Nonlocal Multiscale Discrete-Continuum Model for Predicting Mechanical Behavior of Granular Materials
,”
Int. J. Numer. Methods Eng.
,
106
(
2
), pp.
129
160
.10.1002/nme.5139
13.
Kirchdoerfer
,
T.
, and
Ortiz
,
M.
,
2016
, “
Data-Driven Computational Mechanics
,”
Comput. Methods Appl. Mech. Eng.
,
304
, pp.
81
101
.10.1016/j.cma.2016.02.001
14.
Ghaboussi
,
J.
,
Garrett
,
J. H.
, and
Wu
,
X.
,
1991
, “
Knowledge-Based Modeling of Material Behavior With Neural Networks
,”
J. Eng. Mech.
,
117
(
1
), pp.
132
153
.10.1061/(ASCE)0733-9399(1991)117:1(132)
15.
Ellis
,
G. W.
,
Yao
,
C.
,
Zhao
,
R.
, and
Penumadu
,
D.
,
1995
, “
Stress-Strain Modeling of Sands Using Artificial Neural Networks
,”
J. Geotech. Eng.
,
121
(
5
), pp.
429
435
.10.1061/(ASCE)0733-9410(1995)121:5(429)
16.
Furukawa
,
T.
, and
Yagawa
,
G.
,
1998
, “
Implicit Constitutive Modelling for Viscoplasticity Using Neural Networks
,”
Int. J. Numer. Methods Eng.
,
43
(
2
), pp.
195
219
.10.1002/(SICI)1097-0207(19980930)43:2<195::AID-NME418>3.0.CO;2-6
17.
Aggarwal
,
C. C.
,
2018
,
Neural Networks and Deep Learning
, Springer, Yorktown Heights, NY.
18.
Zhu
,
J. H.
,
Zaman
,
M. M.
, and
Anderson
,
S. A.
,
1998
, “
Modeling of Soil Behavior With a Recurrent Neural Network
,”
Can. Geotech. J.
,
35
(
5
), pp.
858
872
.10.1139/t98-042
19.
Lefik
,
M.
, and
Schrefler
,
B. A.
,
2003
, “
Artificial Neural Network as an Incremental Non-Linear Constitutive Model for a Finite Element Code
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
28–30
), pp.
3265
3283
.10.1016/S0045-7825(03)00350-5
20.
Chollet
,
F.
,
2018
,
Deep Learning With Python
, Manning, Shelter Island, NY.
21.
Géron
,
A.
,
2019
,
Hands-On Machine Learning With Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems,
O'Reilly, Sebastopol, CA
.
22.
Wang
,
K.
, and
Sun
,
W. C.
,
2018
, “
A Multiscale Multi-Permeability Poroplasticity Model Linked by Recursive Homogenizations and Deep Learning
,”
Comput. Methods Appl. Mech. Eng.
,
334
, pp.
337
380
.10.1016/j.cma.2018.01.036
23.
Leiter
,
K. W.
,
Barnes
,
B. C.
,
Becker
,
R.
, and
Knap
,
J.
,
2018
, “
Accelerated Scale-Bridging Through Adaptive Surrogate Model Evaluation
,”
J. Comput. Sci.
,
27
, pp.
91
106
.10.1016/j.jocs.2018.04.010
24.
O'Sullivan
,
C.
,
2011
,
Particulate Discrete Element Modelling: A Geomechanics Perspective
,
Routledge, Oxfordshire, UK
.
25.
Ai
,
J.
,
Chen
,
J.-F.
,
Rotter
,
J. M.
, and
Ooi
,
J. Y.
,
2011
, “
Assessment of Rolling Resistance Models in Discrete Element Simulations
,”
Powder Technol.
,
206
(
3
), pp.
269
282
.10.1016/j.powtec.2010.09.030
26.
de Souza Neto
,
E. A.
,
Peric
,
D.
, and
Owen
,
D. R. J.
,
2008
,
Computational Methods for Plasticity: Theory and Applications
,
Wiley, West Sussex, UK
.
27.
Yamashita
,
H.
,
Jayakumar
,
P.
, and
Sugiyama
,
H.
,
2016
, “
Physics-Based Flexible Tire Model Integrated With LuGre Tire Friction for Transient Braking and Cornering Analysis
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
3
), p.
031017-1-17
.10.1115/1.4032855
28.
Yamashita
,
H.
,
Valkeapää
,
A.
,
Jayakumar
,
P.
, and
Sugiyama
,
H.
,
2015
, “
Continuum Mechanics Based Bilinear Shear Deformable Shell Element Using Absolute Nodal Coordinate Formulation
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
5
), p.
051012-1-9
.10.1115/1.4028657
29.
Yamashita
,
H.
,
Jayakumar
,
P.
,
Alsaleh
,
M.
, and
Sugiyama
,
H.
,
2018
, “
Physics-Based Deformable Tire-Soil Interaction Model for Off-Road Mobility Simulation and Experimental Validation
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
2
), p.
021002-1-15
.10.1115/1.4037994
30.
Letherwood
,
M.
,
Gerth
,
R.
,
Jayakumar
,
O.
, and
Dasch
,
J.
(eds.),
2019
, “
Cooperative Demonstration of Technology (CDT-308) Next-Generation NATO Reference Mobility Model (NG-NRMM)
,” NATO STO Technical Report, CDT-308.
You do not currently have access to this content.