Abstract

A new hierarchical multiscale terrain model is developed using the material point method (MPM) to enable effective modeling of large terrain deformation for high-fidelity off-road mobility simulations. Unlike the Lagrangian finite element (FE) model, MPM allows for modeling large deformation of a continuum without mesh distortion using material points as moving quadrature points for the background grid. This unique feature is extended to account for complex granular soil material behavior with the hierarchical multiscale modeling approach in the context of off-road mobility simulations. The grain-scale discrete-element (DE) representative volume element (RVE) and its neural network surrogate model (artificial neural network (ANN) RVE) are developed and introduced to the upper-scale MPM model through the scale-bridging algorithm. The DE RVE is used to generate training data for the ANN RVE, allowing for predicting the history-dependent grain-scale soil material behavior efficiently at every material point that moves through the upper-scale MPM background grid. A numerical procedure for modeling the interaction of the nonlinear FE tire model with the MPM-ANN multiscale terrain model is developed considering moving soil patches generalized for the upper-scale MPM terrain model. It is fully integrated into the general off-road mobility simulation framework by leveraging scalable high-performance computing techniques. The predictive ability of the proposed MPM-ANN multiscale off-road mobility model is examined and validated against the full-scale vehicle test data, involving large deformation of soft terrain. The computational benefit from the neural network surrogate model is also demonstrated.

References

1.
McCullough
,
M.
,
Jayakumar
,
P.
,
Dasch
,
J.
, and
Gorsich
,
D.
,
2017
, “
The Next Generation NATO Reference Mobility Model Development
,”
J. Terramech.
,
73
, pp.
49
60
.10.1016/j.jterra.2017.06.002
2.
Wong
,
J. Y.
,
2008
,
Theory of Ground Vehicles
,
Wiley
, Hoboken, NJ.
3.
Smith
,
W.
, and
Peng
,
H.
,
2013
, “
Modeling of Wheel–Soil Interaction Over Rough Terrain Using the Discrete Element Method
,”
J. Terramech.
,
50
(
5–6
), pp.
277
287
.10.1016/j.jterra.2013.09.002
4.
Recuero
,
A.
,
Serban
,
R.
,
Peterson
,
B.
,
Sugiyama
,
H.
,
Jayakumar
,
P.
, and
Negrut
,
D.
,
2017
, “
A High-Fidelity Approach for Vehicle Mobility Simulation: Nonlinear Finite Element Tires Operating on Granular Material
,”
J. Terramech.
,
72
, pp.
39
54
.10.1016/j.jterra.2017.04.002
5.
Wasfy
,
T. M.
,
Jayakumar
,
P.
,
Mechergui
,
D.
, and
Sanikommu
,
S.
,
2018
, “
Prediction of Vehicle Mobility on Large-Scale Soft-Soil Terrain Maps Using Physics-Based Simulation
,”
Int. J. Veh. Perform.
,
4
(
4
), pp.
347
381
.10.1504/IJVP.2018.095753
6.
Serban
,
R.
,
Negrut
,
D.
,
Recuero
,
A.
, and
Jayakumar
,
P.
,
2019
, “
An Integrated Framework for High-Performance, High-Fidelity Simulation of Ground Vehicle-Tyre-Terrain Interaction
,”
Int. J. Veh. Perform.
,
5
(
3
), pp.
233
259
.10.1504/IJVP.2019.100698
7.
Choi
,
K. K.
,
Jayakumar
,
P.
,
Funk
,
M.
,
Gaul
,
N.
, and
Wasfy
,
T. M.
,
2019
, “
Framework of Reliability-Based Stochastic Mobility Map for Next Generation Nato Reference Mobility Model
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
2
), p. 021012.10.1115/1.4041350
8.
Mechergui
,
D.
, and
Jayakumar
,
P.
,
2020
, “
Efficient Generation of Accurate Mobility Maps Using Machine Learning Algorithms
,”
J. Terramech.
,
88
, pp.
53
63
.10.1016/j.jterra.2019.12.002
9.
Marple
,
G. R.
,
Gorsich
,
D.
,
Jayakumar
,
P.
, and
Veerapaneni
,
S.
,
2021
, “
An Active Learning Framework for Constructing High-Fidelity Mobility Maps
,”
IEEE Trans. Veh. Technol.
,
70
(
10
), pp.
9803
9813
.10.1109/TVT.2021.3107338
10.
Yamashita
,
H.
,
Chen
,
G.
,
Ruan
,
Y.
,
Jayakumar
,
P.
, and
Sugiyama
,
H.
,
2019
, “
Hierarchical Multiscale Modeling of Tire–Soil Interaction for Off-Road Mobility Simulation
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
6
), p. 061007.10.1115/1.4042510
11.
Yamashita
,
H.
,
Chen
,
G.
,
Ruan
,
Y.
,
Jayakumar
,
P.
, and
Sugiyama
,
H.
,
2020
, “
Parallelized Multiscale Off-Road Vehicle Mobility Simulation Algorithm and Full-Scale Vehicle Validation
,”
ASME J. Comput. Nonlinear Dyn.
,
15
(
9
), p. 091007.10.1115/1.4046666
12.
Guo
,
N.
, and
Zhao
,
J.
,
2014
, “
A Coupled FEM/DEM Approach for Hierarchical Multiscale Modelling of Granular Media
,”
Int. J. Numer. Methods Eng.
,
99
(
11
), pp.
789
818
.10.1002/nme.4702
13.
Liu
,
Y.
,
Sun
,
W.
,
Yuan
,
Z.
, and
Fish
,
J.
,
2016
, “
A Nonlocal Multiscale Discrete‐Continuum Model for Predicting Mechanical Behavior of Granular Materials
,”
Int. J. Numer. Methods Eng.
,
106
(
2
), pp.
129
160
.10.1002/nme.5139
14.
Chen
,
G.
,
Yamashita
,
H.
,
Ruan
,
Y.
,
Jayakumar
,
P.
,
Knap
,
J.
,
Leiter
,
K. W.
,
Yang
,
X.
, and
Sugiyama
,
H.
,
2021
, “
Enhancing Hierarchical Multiscale Off-Road Mobility Model by Neural Network Surrogate Model
,”
ASME J. Comput. Nonlinear Dyn.
,
16
(
8
), p. 081005.10.1115/1.4051271
15.
Soga
,
K.
,
Alonso
,
E.
,
Yerro
,
A.
,
Kumar
,
K.
, and
Bandara
,
S.
,
2016
, “
Trends in Large-Deformation Analysis of Landslide Mass Movements With Particular Emphasis on the Material Point Method
,”
Géotechnique
,
66
(
3
), pp.
248
273
.10.1680/jgeot.15.LM.005
16.
Donea
,
J.
,
Huerta
,
A.
,
Ponthot
,
J. P.
, and
Rodríguez‐Ferran
,
A.
,
2004
, “
Arbitrary Lagrangian–Eulerian Methods
,”
Encyclopedia of Computational Mechanics
, Wiley, Hoboken, NJ.
17.
Aubram
,
D.
,
2015
, “
Development and Experimental Validation of an Arbitrary Lagrangian–Eulerian (ALE) Method for Soil Mechanics
,”
Geotechnik
,
38
(
3
), pp.
193
204
.10.1002/gete.201400030
18.
Bakroon
,
M.
,
Daryaei
,
R.
,
Aubram
,
D.
, and
Rackwitz
,
F.
,
2017
, “
Arbitrary Lagrangian-Eulerian Finite Element Formulations Applied to Geotechnical Problems
,”
Workshop on Numerical Methods in Geotechnics, Hamburg, Germany
.
19.
Sulsky
,
D.
,
Zhou
,
S. J.
, and
Schreyer
,
H. L.
,
1995
, “
Application of a Particle-in-Cell Method to Solid Mechanics
,”
Comput. Phys. Commun.
,
87
(
1–2
), pp.
236
252
.10.1016/0010-4655(94)00170-7
20.
Bardenhagen
,
S. G.
,
Brackbill
,
J. U.
, and
Sulsky
,
D.
,
2000
, “
The Material-Point Method for Granular Materials
,”
Comput. Methods Appl. Mech. Eng.
,
187
(
3–4
), pp.
529
541
.10.1016/S0045-7825(99)00338-2
21.
Bardenhagen
,
S. G.
, and
Kober
,
E. M.
,
2004
, “
The Generalized Interpolation Material Point Method
,”
Comput. Model. Eng. Sci.
,
5
(
6
), pp.
477
496
.10.3970/cmes.2004.005.477
22.
Fern
,
E. J.
, and
Soga
,
K.
,
2016
, “
The Role of Constitutive Models in MPM Simulations of Granular Column Collapses
,”
Acta Geotech.
,
11
(
3
), pp.
659
678
.10.1007/s11440-016-0436-x
23.
Zhang
,
X.
,
Chen
,
Z.
, and
Liu
,
Y.
,
2016
,
The Material Point Method: A Continuum-Based Particle Method for Extreme Loading Cases
,
Academic Press
, London, UK.
24.
Fern
,
J.
,
Rohe
,
A.
,
Soga
,
K.
, and
Alonso
,
E.
,
2019
,
The Material Point Method for Geotechnical Engineering: A Practical Guide
,
CRC Press
, Boca Raton, FL.
25.
Agarwal
,
S.
,
Senatore
,
C.
,
Zhang
,
T.
,
Kingsbury
,
M.
,
Iagnemma
,
K.
,
Goldman
,
D. I.
, and
Kamrin
,
K.
,
2019
, “
Modeling of the Interaction of Rigid Wheels With Dry Granular Media
,”
J. Terramech.
,
85
, pp.
1
14
.10.1016/j.jterra.2019.06.001
26.
Liang
,
W.
, and
Zhao
,
J.
,
2019
, “
Multiscale Modeling of Large Deformation in Geomechanics
,”
Int. J. Numer. Anal. Methods Geomech.
,
43
(
5
), pp.
1080
1114
.10.1002/nag.2921
27.
O'Sullivan
,
C.
,
2011
,
Particulate Discrete Element Modelling: A Geomechanics Perspective
,
CRC Press
, Routledge, New York.
28.
Ai
,
J.
,
Chen
,
J. F.
,
Rotter
,
J. M.
, and
Ooi
,
J. Y.
,
2011
, “
Assessment of Rolling Resistance Models in Discrete Element Simulations
,”
Powder Technol.
,
206
(
3
), pp.
269
282
.10.1016/j.powtec.2010.09.030
29.
Chollet
,
F.
,
2021
,
Deep Learning With Python
,
Simon and Schuster
, Shelter Island, NY.
30.
Géron
,
A.
,
2022
,
Hands-on Machine Learning With Scikit-Learn, Keras, and TensorFlow
,
O'Reilly Media
, Sebastopol, CA.
31.
Yamashita
,
H.
,
Jayakumar
,
P.
, and
Sugiyama
,
H.
,
2016
, “
Physics-Based Flexible Tire Model Integrated With LuGre Tire Friction for Transient Braking and Cornering Analysis
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
3
), p. 031017.10.1115/1.4032855
32.
Yamashita
,
H.
,
Jayakumar
,
P.
,
Alsaleh
,
M.
, and
Sugiyama
,
H.
,
2018
, “
Physics-Based Deformable Tire–Soil Interaction Model for Off-Road Mobility Simulation and Experimental Validation
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
2
), p. 021002.10.1115/1.4037994
33.
Erwin
,
C.
,
2020
, “
Bullet 2.85 Physics SDK Manual
”.
34.
Letherwood
,
M.
,
Gerth
,
R.
,
Jayakumar
,
O.
, and
Dasch
,
J.
, eds.,
2019
, “
Cooperative Demonstration of Technology (CDT-308) Next-Generation NATO Reference Mobility Model (NG-NRMM)
,”
NATO STO,
Report No. CDT-308.
You do not currently have access to this content.