Abstract

With the significant increase in vehicle ownership in our country, urban traffic conditions have become increasingly congested. Low-speed driving has become more prevalent, leading to more frequent instances of starting and braking. Consequently, the issue of low-speed braking flutter has become increasingly prominent. While the brake is in an open environment, the dust and particles in the air and the debris generated by the brake itself will have an impact on the braking behavior. In addition, according to the theory of modal coupling, the braking stability of the vehicle is also affected by other components. In this paper, different dynamic torsional models of braking system are established according to different braking conditions. Through numerical calculation, the influence of tire parameters, road conditions, and particles on the friction dynamics characteristics of braking system pairs is explored. The results show that the instability of the brake pair system often occurs at low speed. Different tire slip ratios, tire offset factors, and road conditions will lead to different relative motions of the braking system, but the existence of particles in the brake lining-disk interface can enhance the motion stability of the system.

References

1.
Wei
,
D.
,
Ruan
,
J.
, and
Huo
,
F.
,
2017
, “
Limit Cycle Judder for New Type of Drum Brake With Foldable Cam Lever Actuation Device and Layered Lining
,”
J. Vibroeng.
,
19
(
6
), pp.
4471
4482
.10.21595/jve.2017.17451
2.
Mills
,
H. R.
,
1938
, “
Brake Squeak
,”
Institution of Automobile Engineers
, Report No. 9000 B.
3.
Andreaus
,
U.
, and
Casini
,
P.
,
2001
, “
Dynamics of Friction Oscillators Excited by a Moving Base and/or Driving Force
,”
J. Sound Vib.
,
245
(
4
), pp.
685
699
.10.1006/jsvi.2000.3555
4.
Li
,
Y.
, and
Feng
,
Z. C.
,
2004
, “
Bifurcation and Chaos in Friction-Induced Vibration
,”
Commun. Nonlinear Sci. Numer. Simul.
,
9
(
6
), pp.
633
647
.10.1016/S1007-5704(03)00058-3
5.
Wei
,
D.
,
Zhu
,
W.
,
Wang
,
B.
,
Ma
,
Q.
, and
Kang
,
Z.
,
2015
, “
Effects of Brake Pressures on Stick-Slip Bifurcation and Chaos of the Vehicle Brake System
,”
J. Vibroeng.
,
17
(
15
), pp.
2718
2732
.https://www.extrica.com/article/15756#:~:text=With%20the%20increase%20of%20brake,phase%2C%20but%20the%20slip%20motion
6.
Hu
,
S.
, and
Liu
,
Y.
,
2017
, “
Disc Brake Vibration Model Based on Stribeck Effect and Its Characteristics Under Different Braking Conditions
,”
Math. Probl. Eng.
,
2017
(
4
), pp.
1
13
.10.1155/2017/6023809
7.
Paliwal
,
M.
,
Mahajan
,
A.
,
Don
,
J.
,
Chu
,
T.
, and
Filip
,
P.
,
2005
, “
Noise and Vibration Analysis of a Disc–Brake System Using a Stick–Slip Friction Model Involving Coupling Stiffness
,”
J. Sound Vib.
,
282
(
3–5
), pp.
1273
1284
.10.1016/j.jsv.2004.05.005
8.
North
,
M. R.
,
1972
, “Disc Brake Squeal—A Theoretical Model,” Motor Industry Research Association (
MIRA
), Report No. 1972/5.
9.
Ouyang
,
H.
,
Nack
,
W.
,
Yuan
,
Y.
, and
Chen
,
F.
,
2005
, “
Numerical Analysis of Automotive Disc Brake Squeal: A Review
,”
Int. J. Veh. Noise Vib.
,
1
(
3–4
), pp.
207
231
.10.1504/ijvnv.2005.007524
10.
Giannini
,
O.
,
Akay
,
A.
, and
Massi
,
F.
,
2006
, “
Experimental Analysis of Brake Squeal Noise on a Laboratory Brake Setup
,”
J. Sound Vib.
,
292
(
1–2
), pp.
1
20
.10.1016/j.jsv.2005.05.032
11.
Culla
,
A.
, and
Massi
,
F.
,
2009
, “
Uncertainty Model for Contact Instability Prediction
,”
J. Acoust. Soc. Am.
,
126
(
3
), pp.
1111
1119
.10.1121/1.3183376
12.
Guan
,
D.
,
Du
,
Y.
,
Wang
,
X.
, and
Li
,
Q.
,
2014
, “
Analysis of a Disc Brake High Frequency Squeal and Reduction
,”
Eng. Mech.
,
31
(
12
), pp.
217
222
.
13.
Godet
,
M.
,
1984
, “
The Third-Body Approach: A Mechanical View of Wear
,”
Wear
,
100
(
1 − 3
), pp.
437
452
.10.1016/0043-1648(84)90025-5
14.
Hamid
,
M. K. A.
,
2010
, “
Study of the Grit Particle Size and Shape Effects on the Frictional Characteristics of the Automotive Braking System
,” Ph.D. thesis, University of Western Australia, Perth, Australia.
15.
Khalilitehrani
,
M.
,
Sasic
,
S.
, and
Rasmuson
,
A.
,
2017
, “
Multiscale Rheophysics of Nearly Jammed Granular Flows in a High Shear System
,”
Powder Technol.
,
315
, pp.
356
366
.10.1016/j.powtec.2017.03.055
16.
Koo
,
S. L.
,
Tan
,
H. S.
, and
Tomizuka
,
M.
,
2004
, “
Nonlinear Tire Lateral Force Versus Slip Angle Curve Identification
,”
Proceedings of the 2004 American Control Conference
,
Boston, MA
, June 30–July 2, pp.
2128
2133
.10.23919/ACC.2004.1383775
17.
Canudas-de-Wit
,
C.
,
Tsiotras
,
P.
,
Velenis
,
E.
,
Basset
,
M.
, and
Gissinger
,
G.
,
2003
, “
Dynamic Friction Models for Road/Tire Longitudinal Interaction
,”
Veh. Syst. Dyn.
,
39
(
3
), pp.
189
226
.10.1076/vesd.39.3.189.14152
18.
Claeys
,
X.
,
Yi
,
J.
,
Alvarez
,
L.
, Horowitz, R., and de Wit, C. C.,
2001
, “
A Dynamic Tire/Road Friction Model for 3D Vehicle Control and Simulation
,”
Proceedings of the 2001 IEEE Conference on Intelligent Transportation Systems
, Oakland, CA, Aug. 25
29, pp.
483
488
.10.1109/ITSC.2001.948705
19.
Molisani
,
L. R.
,
Burdisso
,
R. A.
, and
Tsihlas
,
D.
,
2003
, “
A Coupled Tire Structure/Acoustic Cavity Model
,”
Int. J. Solids Struct.
,
40
(
19
), pp.
5125
5138
.10.1016/S0020-7683(03)00259-2
20.
Sharma
,
A. K.
,
Bouteldja
,
M.
, and
Cerezo
,
V.
,
2020
, “
Multi-Physical Model for Tyre–Road Contact—The Effect of Surface Texture
,”
Int. J. Pavement Eng.
,
23
(
3
), pp.
755
772
.10.1080/10298436.2020.1769844
21.
Hu
,
H.
,
Yang
,
Y.
,
Gu
,
Z.
,
Song
,
L.
,
Ma
,
X.
, and
Zhang
,
S.
,
2021
, “
Study on Vertical Mechanical Properties of Tyre Based on Hysteresis–Rolling Characteristics
,”
Veh. Syst. Dyn.
,
60
(
11
), pp.
3810
3829
.10.1080/00423114.2021.1981950
22.
Lu
,
Y. J.
,
Wang
,
L. J.
,
Yang
,
Q.
, and
Ren
,
J. Y.
,
2018
, “
Analysis of Asphalt Pavement Mechanical Behaviour by Using a Tire-Pavement Coupling Model
,”
Int. J. Simul. Modell.
,
17
(
2
), pp.
245
256
.10.2507/IJSIMM17(2)423
23.
Deng
,
L.
,
Cao
,
R.
,
Wang
,
W.
, and
Yin
,
X.
,
2016
, “
A Multi-Point Tire Model for Studying Bridge–Vehicle Coupled Vibration
,”
Int. J. Struct. Stab. Dyn.
,
16
(
8
), p.
1550047
.10.1142/S0219455415500479
24.
Kikuuwe
,
R.
,
2019
, “
A Brush-Type Tire Model With Nonsmooth Representation
,”
Math. Probl. Eng.
,
2019
(
3
), pp.
1
13
.10.1155/2019/9747605
25.
Zhang
,
Y.
,
Wei
,
D.
,
Wu
,
B.
, and
Jiang
,
P.
,
2023
, “
Construction of Friction Model of the Third Body Layer and Its Effects on the Dynamic Characteristics in Brake System
,”
ASME J. Comput. Nonlinear Dyn.
,
18
(
1
), p.
011003
.10.1115/1.4056181
26.
Van de
Vrande
,
B.
L., Van
Campen
,
D.
H., and De
Kraker
,
A.
,
1999
, “
An Approximate Analysis of Dry-Friction-Induced Stick-Slip Vibrations by a Smoothing Procedure
,”
Nonlinear Dyn.
,
19
(
2
), pp.
159
–1
71
.10.1023/A:1008306327781
27.
Guo
,
K.
,
2016
, “
UniTire Model
,”
J. Mech. Eng.
,
52
(
12
), pp.
90
99
.10.3901/JME.2016.12.090
You do not currently have access to this content.