Abstract

The problem of input–output finite-time (IO-FT) bipartite synchronization for a class of nonlinear multiweighted complex dynamical networks (CDNs) in the presence of multiple coupling delays, external disturbances, and deception attacks is explored in this study. To be precise, the limited communication resources have been mitigated with the aid of undertaken hybrid triggered strategy, which reduces the unwanted network transmission and simultaneously improves the system's performance. Specifically, in the hybrid-trigger scheme, a Bernoulli distributed random variable has been employed to switch between the two communication channels. Moreover, the event-triggered scheme involving the dynamic trigger conditions is incorporated in the sensor-to-controller, which reduces the number of triggers compared to static event-triggered strategy. Further, the adequate conditions are derived in terms of linear matrix inequalities by constructing a Lyapunov–Krasovskii functional candidate. In light of this, the required parameters involved in triggering and the gain matrix are acquired by solving the developed linear matrix inequalities. Eventually, the reliability of the developed approach is verified via the illustration of two numerical examples, including the Chua's circuit with simulation verifications.

References

1.
Liu, X., Xia
,
J.
,
Huang
,
X.
, and
Shen
,
H.
,
2020
, “
Generalized Synchronization for Coupled Markovian Neural Networks Subject to Randomly Occurring Parameter Uncertainties
,”
Phys. A
,
540
, p.
123070
.10.1016/j.physa.2019.123070
2.
Chen, G., Xia
,
J.
,
Park
,
J. H.
,
Shen
,
H.
, and
Zhuang
,
G.
,
2022
, “
Robust Sampled-Data Control for Switched Complex Dynamical Networks With Actuators Saturation
,”
IEEE Trans. Syst. Man. Cybern.
,
52
(
10
), pp.
10909
10923
.10.1109/TCYB.2021.3069813
3.
Qin, Z., Wang
,
J. L.
,
Huang
,
Y. L.
, and
Ren
,
S. Y.
,
2017
, “
Synchronization and h Synchronization of Multi-Weighted Complex Delayed Dynamical Networks With Fixed and Switching Topologies
,”
J. Franklin Inst.
,
354
(
15
), pp.
7119
7138
.10.1016/j.jfranklin.2017.08.033
4.
Yang
,
Z.
,
Zhang
,
Z.
, and
Wang
,
X.
,
2022
, “
New Finite-Time Synchronization Conditions of Delayed Multinonidentical Coupled Complex Dynamical Networks
,”
Math. Biosci. Eng.
,
20
(
2
), pp.
3047
3069
.10.3934/mbe.2023144
5.
Feng, J., Yang
,
P.
, and
Zhao
,
Y.
,
2016
, “
Cluster Synchronization for Nonlinearly Time-Varying Delayed Coupling Complex Networks With Stochastic Perturbation Via Periodically Intermittent Pinning Control
,”
Appl. Math. Comput.
,
291
, pp.
52
68
.10.1016/j.amc.2016.06.030
6.
Hu
,
Z.
,
Ren
,
H.
, and
Shi
,
P.
,
2022
, “
Synchronization of Complex Dynamical Networks Subject to Noisy Sampling Interval and Packet Loss
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
33
(
8
), pp.
3216
3226
.10.1109/TNNLS.2021.3051052
7.
Zhang, X., Zhou
,
W.
,
Karimi
,
H. R.
, and
Sun
,
Y.
,
2021
, “
Finite-and Fixed-Time Cluster Synchronization of Nonlinearly Coupled Delayed Neural Networks Via Pinning Control
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
32
(
11
), pp.
5222
5231
.10.1109/TNNLS.2020.3027312
8.
Ma, N., Liu
,
Z.
, and
Chen
,
L.
,
2019
, “
Synchronisation for Complex Dynamical Networks With Hybrid Coupling Time-Varying Delays Via Pinning Adaptive Control
,”
Int. J. Syst. Sci.
,
50
(
8
), pp.
1661
1676
.10.1080/00207721.2019.1622813
9.
Tang, Z., Park
,
J. H.
,
Wang
,
Y.
, and
Feng
,
J.
,
2019
, “
Distributed Impulsive Quasi-Synchronization of Lur'e Networks With Proportional Delay
,”
IEEE Trans. Syst. Man. Cybern.
,
49
(
8
), pp.
3105
3115
.10.1109/TCYB.2018.2839178
10.
Liu, F., Song
,
Q.
,
Wen
,
G.
,
Lu
,
J.
, and
Cao
,
J.
,
2018
, “
Bipartite Synchronization of Lur'e Network Under Signed Digraph
,”
Int. J. Robust Nonlinear Control
,
28
(
18
), pp.
6087
6105
.10.1002/rnc.4358
11.
Wang, M., Guo
,
J.
,
Qin
,
S.
,
Feng
,
J.
, and
Li
,
W.
,
2021
, “
Exponential Bipartite Synchronization of Delayed Coupled Systems Over Signed Graphs With Markovian Switching Via Intermittent Control
,”
J. Franklin Inst.
,
358
(
3
), pp.
2060
2085
.10.1016/j.jfranklin.2020.12.031
12.
Altafini
,
C.
,
2013
, “
Consensus Problems on Networks With Antagonistic Interactions
,”
IEEE Trans. Autom. Control
,
58
(
4
), pp.
935
946
.10.1109/TAC.2012.2224251
13.
Zhao
,
C.
,
Zhong
,
S.
,
Zhang
,
X.
,
Zhong
,
Q.
, and
Shi
,
K.
,
2020
, “
Novel Results on Nonfragile Sampled-Data Exponential Synchronization for Delayed Complex Dynamical Networks
,”
Int. J. Robust Nonlinear Control
,
30
(
10
), pp.
4022
4042
.10.1002/rnc.4975
14.
He, S., Wu
,
Y.
, and
Li
,
Y.
,
2019
, “
Non-Fragile Sampled-Data Control of Network Systems Subject to Time-Delay
,”
Int. J. Syst. Sci.
,
50
(
4
), pp.
843
857
.10.1080/00207721.2019.1575486
15.
Li
,
X.
,
Tang
,
Y.
, and
Karimi
,
H. R.
,
2020
, “
Consensus of Multi-Agent Systems Via Fully Distributed Event-Triggered Control
,”
Automatica
,
116
, p.
108898
.10.1016/j.automatica.2020.108898
16.
Zhang, Z., Liu
,
L.
,
Fang
,
J.
, and
Qu
,
B.
,
2023
, “
Event-Triggered Stabilisation for Stochastic Delayed Differential Systems With Exogenous Disturbances
,”
J. Franklin Inst.
,
360
(
2
), pp.
1395
1414
.10.1016/j.jfranklin.2022.11.010
17.
Zha, L., Tian
,
E.
,
Xie
,
X.
,
Gu
,
Z.
, and
Cao
,
J.
,
2018
, “
Decentralized Event-Triggered h Control for Neural Networks Subject to Cyber-Attacks
,”
Inf. Sci.
,
457
, pp.
141
155
.10.1016/j.ins.2018.04.018
18.
Lian
,
Z.
,
Shi
,
P.
, and
Lim
,
C. C.
,
2021
, “
Hybrid-Triggered Interval Type-2 Fuzzy Control for Networked Systems Under Attacks
,”
Inf. Sci.
,
567
, pp.
332
347
.10.1016/j.ins.2021.03.050
19.
Cao, E. Z., Cai
,
Z.
,
Zhang
,
B. L.
, and
Wang
,
B.
,
2020
, “
Hybrid-Driven-Based h Control for Offshore Steel Jacket Platforms in Network Environments
,”
IEEE Access
,
8
, pp.
56151
56159
.10.1109/ACCESS.2020.2982464
20.
Shi, K., J. Wang, Zhong
,
S.
,
Tang
,
Y.
, and
Cheng
,
J.
,
2020
, “
Hybrid-Driven Finite-Time h Sampling Synchronization Control for Coupling Memory Complex Networks With Stochastic Cyber Attacks
,”
Neurocomputing
,
387
, pp.
241
254
.10.1016/j.neucom.2020.01.022
21.
Liu, J., Wu
,
Z. G.
,
Yue
,
D.
, and
Park
,
J. H.
,
2019
, “
Stabilization of Networked Control Systems With Hybrid-Driven Mechanism and Probabilistic Cyber Attacks
,”
IEEE Trans. Syst., Man, Cybern.: Syst.
,
51
(
2
), pp.
943
953
.10.1109/TSMC.2018.2888633
22.
Girard
,
A.
,
2015
, “
Dynamic Triggering Mechanisms for Event-Triggered Control
,”
IEEE Trans. Autom. Control
,
60
(
7
), pp.
1992
1997
.10.1109/TAC.2014.2366855
23.
Yuan
,
S.
,
Yu
,
C.
, and
Sun
,
J.
,
2021
, “
Adaptive Event-Triggered Consensus Control of Linear Multi-Agent Systems With Cyber Attacks
,”
Neurocomputing
,
442
, pp.
1
9
.10.1016/j.neucom.2021.02.040
24.
Gu, Z., Shi
,
P.
,
Yue
,
D.
,
Yan
,
S.
, and
Xie
,
X.
,
2021
, “
Memory-Based Continuous Event-Triggered Control for Networked TS Fuzzy Systems Against Cyber-Attacks
,”
IEEE Trans. Fuzzy Syst.
,
29
(
10
), pp.
3118
3129
.10.1109/TFUZZ.2020.3012771
25.
Gu, Z., Park
,
J. H.
,
Yue
,
D.
,
Wu
,
Z. G.
, and
Xie
,
X.
,
2020
, “
Event-Triggered Security Output Feedback Control for Networked Interconnected Systems Subject to Cyber-Attacks
,”
IEEE Trans. Syst. Man Cybern.: Syst.
,
51
(
10
), pp.
6197
6206
.10.1109/TSMC.2019.2960115
26.
Shen, B., Wang
,
Z.
,
Wang
,
D.
, and
Li
,
Q.
,
2020
, “
State-Saturated Recursive Filter Design for Stochastic Time-Varying Nonlinear Complex Networks Under Deception Attacks
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
31
(
10
), pp.
3788
3800
.10.1109/TNNLS.2019.2946290
27.
Yu, T., Liu
,
Y.
,
Cao
,
J.
, and
Alsaadi
,
F. E.
,
2023
, “
Finite-Time Stability of Dynamical System Under Event-Triggered Hybrid Control
,”
Appl. Math. Modell.
,
117
, pp.
286
295
.10.1016/j.apm.2022.12.031
28.
Wang, J., Ru
,
T.
,
Xia
,
J.
,
Wei
,
Y.
, and
Wang
,
Z.
,
2019
, “
Finite-Time Synchronization for Complex Dynamic Networks With Semi-Markov Switching Topologies: An h Event-Triggered Control Scheme
,”
Appl. Math. Comput.
,
356
, pp.
235
251
.10.1016/j.amc.2019.03.037
29.
Amato
,
F.
,
Ambrosino
,
R.
,
Cosentino
,
C.
, and
De Tommasi
,
G.
,
2010
, “
Input-Output Finite Time Stabilization of Linear Systems
,”
Automatica
,
46
(
9
), pp.
1558
1562
.10.1016/j.automatica.2010.06.005
30.
Yan, H., Tian
,
Y.
,
Li
,
H.
,
Zhang
,
H.
, and
Li
,
Z.
,
2019
, “
Input-Output Finite-Time Mean Square Stabilization of Nonlinear Semi-Markovian Jump Systems
,”
Automatica
,
104
, pp.
82
89
.10.1016/j.automatica.2019.02.024
31.
Liang, J., Wu
,
B.
,
Wang
,
Y. E.
,
Niu
,
B.
, and
Xie
,
X.
,
2019
, “
Input-Output Finite-Time Stability of Fractional-Order Positive Switched Systems
,”
J. Circuits Syst. Comput.
,
38
(
4
), pp.
1619
1638
.10.1007/s00034-018-0942-1
32.
Selvaraj
,
P.
,
Kwon
,
O. M.
,
Lee
,
S. H.
, and
Sakthivel
,
R.
,
2020
, “
Uncertainty and Disturbance Rejections of Complex Dynamical Networks Via Truncated Predictive Control
,”
J. Franklin Inst.
,
357
(
8
), pp.
4901
4921
.10.1016/j.jfranklin.2020.04.016
33.
Liu
,
J.
,
Zha
,
L.
,
Cao
,
J.
, and
Fei
,
S.
,
2016
, “
Hybrid-Driven-Based Stabilisation for Networked Control Systems
,”
IET Control Theory Appl.
,
10
(
17
), pp.
2279
2285
.10.1049/iet-cta.2016.0392
You do not currently have access to this content.