Abstract

Magnetic shape memory alloys (MSMAs) constitute a class of smart materials capable of exhibiting large magnetic field induced strain (MFIS) when subjected to magnetomechanical loadings. Two distinct mechanisms are responsible for the induced strain: martensitic variant reorientation and phase transformation. The martensitic reorientation is the most explored mechanism presenting the advantage to potential provide high-frequency actuation since it does not rely on phase transformation cycles. Despite its capabilities and potential dynamical applications, the dynamical behavior of MSMAs is not extensively explored in the literature that is usually focused on quasi-static behavior. Thereby, the objective of this work is to analyze the nonlinear dynamics of MSMAs. In this regard, an MSMA nonlinear oscillator is investigated, exploiting the system response under different bias magnetic field levels and actuation frequencies. A phenomenological model is employed to describe the MSMA magnetomechanical behavior. Numerical simulations are carried out using the operator split technique together with an iterative process and the fourth-order Runge–Kutta method. Results show that the application of a bias magnetic field can reduce the mean displacement of the system, increasing the oscillation amplitude. Furthermore, the period of oscillation can be modified, even achieving complex behaviors, including chaos. The potential use of MSMAs to dynamical systems is explored showing the possibility to provide adaptive behaviors.

References

1.
Faran
,
E.
, and
Shilo
,
D.
,
2016
, “
Ferromagnetic Shape Memory Alloys—Challenges, Applications, and Experimental Characterization
,”
Exp. Tech.
, 40, pp.
1005
1031
.10.1007/s40799-016-0098-5
2.
Savi
,
M. A.
,
Paiva
,
A.
,
de Araújo
,
C. J.
, and
de Paula
,
A. S.
,
2016
, “
Shape Memory Alloys
,”
Dynamics of Smart Systems and Structures
,
V.
Lopes
, Jr.
,
V.
Steffen
, Jr.
, and
M. A.
Savi
, eds., Springer Cham, Switzerland.
3.
Smith
,
A. R.
,
Tellinen
,
J.
, and
Ullakko
,
K.
,
2014
, “
Rapid Actuation and Response of Ni–Mn–Ga to Magnetic-Field-Induced Stress
,”
Acta Mater.
,
80
, pp.
373
379
.10.1016/j.actamat.2014.06.054
4.
Karaca
,
H. E.
,
Karaman
,
I.
,
Basaran
,
B.
,
Ren
,
Y.
,
Chumlyakov
,
Y. I.
, and
Maier
,
H. J.
,
2009
, “
Magnetic Field-Induced Phase Transformation in NiMnCoIn Magnetic Shape-Memory Alloys—A New Actuation Mechanism With Large Work Output
,”
Adv. Funct. Mater.
,
19
(
7
), pp.
983
998
.10.1002/adfm.200801322
5.
Sutou
,
Y.
,
Imano
,
Y.
,
Koeda
,
N.
,
Omori
,
T.
,
Kainuma
,
R.
,
Ishida
,
K.
, and
Oikawa
,
K.
,
2004
, “
Magnetic and Martensitic Transformations of NiMnX (X = In, Sn, Sb) Ferromagnetic Shape Memory Alloys
,”
Appl. Phys. Lett.
,
85
(
19
), pp.
4358
4360
.10.1063/1.1808879
6.
Cui
,
J.
,
Shield
,
T. W.
, and
James
,
R. D.
,
2004
, “
Phase Transformation and Magnetic Anisotropy of an Iron–Palladium Ferromagnetic Shape-Memory Alloy
,”
Acta Mater.
,
52
(
1
), pp.
35
47
.10.1016/j.actamat.2003.08.024
7.
Oikawa
,
K.
,
Wulff
,
L.
,
Iijima
,
T.
,
Gejima
,
F.
,
Ohmori
,
T.
,
Fujita
,
A.
,
Fukamichi
,
K.
,
Kainuma
,
R.
, and
Ishida
,
K.
,
2001
, “
Promising Ferromagnetic Ni–Co–Al Shape Memory Alloy System
,”
Appl. Phys. Lett.
,
79
(
20
), pp.
3290
3292
.10.1063/1.1418259
8.
Oikawa
,
K.
,
Ota
,
T.
,
Ohmori
,
T.
,
Tanaka
,
Y.
,
Morito
,
H.
,
Fujita
,
A.
,
Kainuma
,
R.
,
Fukamichi
,
K.
, and
Ishida
,
K.
,
2002
, “
Magnetic and Martensitic Phase Transitions in Ferromagnetic Ni–Ga–Fe Shape Memory Alloys
,”
Appl. Phys. Lett.
,
81
(
27
), pp.
5201
5203
.10.1063/1.1532105
9.
Rogovoy
,
A.
, and
Stolbova
,
O.
,
2016
, “
Modeling the Magnetic Field Control of Phase Transition in Ferromagnetic Shape Memory Alloys
,”
Int. J. Plast.
,
85
, pp.
130
155
.10.1016/j.ijplas.2016.07.006
10.
Zhang
,
S.
,
Chen
,
X.
,
Moumni
,
Z.
, and
He
,
Y.
,
2018
, “
Thermal Effects on High-Frequency Magnetic-Field-Induced Martensite Reorientation in Ferromagnetic Shape Memory Alloys: An Experimental and Theoretical Investigation
,”
Int. J. Plast.
,
108
, pp.
1
20
.10.1016/j.ijplas.2018.04.008
11.
Yu
,
C.
,
Kang
,
G.
, and
Fang
,
D.
,
2018
, “
A Thermo-Magneto-Mechanically Coupled Constitutive Model of Magnetic Shape Memory Alloys
,”
Acta Mech. Solida Sin.
,
31
(
5
), pp.
535
556
.10.1007/s10338-018-0046-2
12.
Haldar
,
K.
,
Lagoudas
,
D. C.
, and
Karaman
,
I.
,
2014
, “
Magnetic Field-Induced Martensitic Phase Transformation in Magnetic Shape Memory Alloys: Modeling and Experiments
,”
J. Mech. Phys. Solids
,
69
, pp.
33
66
.10.1016/j.jmps.2014.04.011
13.
Lawrence
,
T.
,
Lindquist
,
P.
,
Ullakko
,
K.
, and
Müllner
,
P.
,
2016
, “
Fatigue Life and Fracture Mechanics of Unconstrained Ni–Mn–Ga Single Crystals in a Rotating Magnetic Field
,”
Mater. Sci. Eng.: A
,
654
, pp.
221
227
.10.1016/j.msea.2015.12.045
14.
Zhang
,
H.
,
Armstrong
,
A.
, and
Müllner
,
P.
,
2018
, “
Effects of Surface Modifications on the Fatigue Life of Unconstrained Ni-Mn-Ga Single Crystals in a Rotating Magnetic Field
,”
Acta Mater.
,
155
, pp.
175
186
.10.1016/j.actamat.2018.05.070
15.
Ullakko
,
K.
,
Huang
,
J. K.
,
Kantner
,
C.
,
O'Handley
,
R. C.
, and
Kokorin
,
V. V.
,
1996
, “
Large Magnetic‐Field‐Induced Strains in Ni2MnGa Single Crystals
,”
Appl. Phys. Lett.
,
69
(
13
), pp.
1966
1968
.10.1063/1.117637
16.
DeSimone
,
A.
, and
James
,
R. D.
,
2002
, “
A Constrained Theory of Magnetoelasticity
,”
J. Mech. Phys. Solids
,
50
(
2
), pp.
283
320
.10.1016/S0022-5096(01)00050-3
17.
James
,
R. D.
, and
Wuttig
,
M.
,
1998
, “
Magnetostriction of Martensite
,”
Philos. Mag. A
,
77
(
5
), pp.
1273
1299
.10.1080/01418619808214252
18.
He
,
Y. J.
,
Chen
,
X.
, and
Moumni
,
Z.
,
2011
, “
Two-Dimensional Analysis to Improve the Output Stress in Ferromagnetic Shape Memory Alloys
,”
J. Appl. Phys.
,
110
(
6
), p.
063905
.10.1063/1.3636366
19.
O'Handley
,
R. C.
,
1998
, “
Model for Strain and Magnetization in Magnetic Shape-Memory Alloys
,”
J. Appl. Phys.
,
83
(
6
), pp.
3263
3270
.10.1063/1.367094
20.
Jin
,
Y. M.
,
2009
, “
Domain Microstructure Evolution in Magnetic Shape Memory Alloys: Phase-Field Model and Simulation
,”
Acta Mater.
,
57
(
8
), pp.
2488
2495
.10.1016/j.actamat.2009.02.003
21.
Peng
,
Q.
,
He
,
Y. J.
, and
Moumni
,
Z.
,
2015
, “
A Phase-Field Model on the Hysteretic Magneto-Mechanical Behaviors of Ferromagnetic Shape Memory Alloy
,”
Acta Mater.
,
88
, pp.
13
24
.10.1016/j.actamat.2015.01.044
22.
Peng
,
Q.
,
Huang
,
J.
,
Chen
,
M.
, and
Sun
,
Q.
,
2017
, “
Phase-Field Simulation of Magnetic Hysteresis and Mechanically Induced Remanent Magnetization Rotation in Ni-Mn-Ga Ferromagnetic Shape Memory Alloy
,”
Scr. Mater.
,
127
, pp.
49
53
.10.1016/j.scriptamat.2016.08.033
23.
Chen
,
X.
,
Moumni
,
Z.
,
He
,
Y.
, and
Zhang
,
W.
,
2014
, “
A Three-Dimensional Model of Magneto-Mechanical Behaviors of Martensite Reorientation in Ferromagnetic Shape Memory Alloys
,”
J. Mech. Phys. Solids
,
64
(
1
), pp.
249
286
.10.1016/j.jmps.2013.11.005
24.
Gauthier
,
J. Y.
,
Lexcellent
,
C.
,
Hubert
,
A.
,
Abadie
,
J.
, and
Chaillet
,
N.
,
2007
, “
Modeling Rearrangement Process of Martensite Platelets in a Magnetic Shape Memory Alloy Ni2MnGa Single Crystal Under Magnetic Field and (or) Stress Action
,”
J. Intell. Mater. Syst. Struct.
,
18
(
3
), pp.
289
299
.10.1177/1045389X06066094
25.
Hirsinger
,
L.
, and
Lexcellent
,
C.
,
2003
, “
Modelling Detwinning of Martensite Platelets Under Magnetic and (or) Stress Actions on Ni–Mn–Ga Alloys
,”
J. Magn. Magn. Mater.
,
254–255
, pp.
275
277
.10.1016/S0304-8853(02)00773-4
26.
Kiefer
,
B.
, and
Lagoudas
,
D. C.
,
2005
, “
Magnetic Field-Induced Martensitic Variant Reorientation in Magnetic Shape Memory Alloys
,”
Philos. Mag.
,
85
(
33–35
), pp.
4289
4329
.10.1080/14786430500363858
27.
Kiefer
,
B.
,
2007
, “
A Phenomenological Constitutive Model for Magnetic Shape Memory Alloys
,” Ph.D. thesis,
Texas A&M University
, College Station, TX.
28.
Shirani
,
M.
, and
Kadkhodaei
,
M.
,
2015
, “
A Modified Constitutive Model With an Enhanced Phase Diagram for Ferromagnetic Shape Memory Alloys
,”
J. Intell. Mater. Syst. Struct.
,
26
(
1
), pp.
56
68
.10.1177/1045389X14521704
29.
Shirani
,
M.
, and
Kadkhodaei
,
M.
,
2014
, “
A Geometrical Approach to Determine Reorientation Start and Continuation Conditions in Ferromagnetic Shape Memory Alloys Considering the Effects of Loading History
,”
Smart Mater. Struct.
,
23
(
12
), p.
125008
.10.1088/0964-1726/23/12/125008
30.
de Souza
,
V. F.
,
Savi
,
M. A.
,
Monteiro
,
L. L. S.
, and
Paiva
,
A.
,
2018
, “
Phenomenological Modeling of the Thermo-Magneto-Mechanical Behavior of Magnetic Shape Memory Alloys
,”
J. Intell. Mater. Syst. Struct.
,
29
(
19
), pp.
3696
3709
.10.1177/1045389X18798954
31.
Barker
,
S.
,
Rhoads
,
E.
,
Lindquist
,
P.
,
Vreugdenhil
,
M.
, and
Müllner
,
P.
,
2016
, “
Magnetic Shape Memory Micropump for Submicroliter Intracranial Drug Delivery in Rats
,”
ASME J. Med. Devices
,
10
(
4
), p.
041009
.10.1115/1.4034576
32.
Saren
,
A.
,
Smith
,
A. R.
, and
Ullakko
,
K.
,
2018
, “
Integratable Magnetic Shape Memory Micropump for High-Pressure, Precision Microfluidic Applications
,”
Microfluid. Nanofluid.
,
22
(
4
), p.
38
.10.1007/s10404-018-2058-0
33.
Shi
,
H.
,
Tan
,
K.
,
Xu
,
J.
, and
Mei
,
X.
,
2020
, “
Design and Performance Analysis of Magnetic Shape Memory Alloy Actuator With a Compact Electromagnetic Coil Configuration
,”
IEEE Trans. Magn.
,
56
(
8
), pp.
1
13
.10.1109/TMAG.2020.3000039
34.
Shi
,
H.
,
Liu
,
Z.
,
Wang
,
H.
, and
Mei
,
X.
,
2021
, “
Design and Performance Analysis of Hydraulic Switching Valve Driven by Magnetic Shape Memory Alloy
,”
Adv. Mech. Eng.
,
13
(
5
), p.
168781402110169
.10.1177/16878140211016985
35.
Jing
,
Y.
,
Luping
,
W.
, and
Jin
,
X.
,
2020
, “
Design and Implementation of Vibration Energy Harvester Based on MSMA Cantilever Beam
,”
Trans. Electr. Electron. Mater.
,
21
(
4
), pp.
399
405
.10.1007/s42341-020-00192-1
36.
Rashidi
,
S.
,
Ehsani
,
M. H.
,
Shakouri
,
M.
, and
Karimi
,
N.
,
2021
, “
Potentials of Magnetic Shape Memory Alloys for Energy Harvesting
,”
J. Magn. Magn. Mater.
,
537
, p.
168112
.10.1016/j.jmmm.2021.168112
37.
Safari
,
O.
,
Zakerzadeh
,
M. R.
, and
Baghani
,
M.
,
2021
, “
Study of a Magnetic SMA-Based Energy Harvester Using a Corrugated Structure
,”
J. Intell. Mater. Syst. Struct.
,
32
(
16
), pp.
1855
1866
.10.1177/1045389X20983903
38.
Sayyaadi
,
H.
,
Mehrabi
,
M.
, and
Hoviattalab
,
M.
,
2021
, “
Analysis and Modification of a Common Energy Harvesting System Using Magnetic Shape Memory Alloys
,”
J. Intell. Mater. Syst. Struct.
,
32
(
5
), pp.
568
583
.10.1177/1045389X20963174
39.
Mohammadsalehi
,
M.
,
Zakerzadeh
,
M. R.
, and
Baghani
,
M.
,
2016
, “
Analysis of Nonlinear Free Vibration of a Beam With Magnetic Shape Memory Alloy Elements
,”
J. Intell. Mater. Syst. Struct.
,
27
(
16
), pp.
2216
2228
.10.1177/1045389X15624799
40.
Kumbhar
,
S. B.
,
Chavan
,
S. P.
, and
Gawade
,
S. S.
,
2018
, “
Adaptive Tuned Vibration Absorber Basedon Magnetorheological Elastomer-Shape Memory Alloy Composite
,”
Mech. Syst. Signal Process.
,
100
, pp.
208
223
.10.1016/j.ymssp.2017.07.027
41.
Henry
,
C. P.
,
2002
, “
Dynamic Actuation Properties of Ni-Mn-Ga Ferromagnetic Shape Memory Alloys
,”
Ph.D. thesis
,
Massachusetts Institute of Technology
, Cambridge, MA.https://dspace.mit.edu/handle/1721.1/8442
42.
Pascan
,
O. Z.
,
He
,
Y. J.
,
Moumni
,
Z.
, and
Zhang
,
W. H.
,
2015
, “
Temperature Rise of High-Frequency Martensite Reorientation Via Type II Twin Boundary Motion in NiMnGa Ferromagnetic Shape Memory Alloy
,”
Scr. Mater.
,
104
, pp.
71
74
.10.1016/j.scriptamat.2015.04.006
43.
Pascan
,
O. Z.
,
He
,
Y.
,
Moumni
,
Z.
, and
Zhang
,
W.
,
2016
, “
High-Frequency Performance of Ferromagnetic Shape Memory Alloys
,”
Ann. Solid Struct. Mech.
,
8
(
1–2
), pp.
17
25
.10.1007/s12356-016-0045-2
44.
Enemark
,
S.
,
Savi
,
M. A.
, and
Santos
,
I. F.
,
2015
, “
Experimental Analyses of Dynamical Systems Involving Shape Memory Alloys
,”
Smart Struct. Syst.
,
15
(
6
), pp.
1521
1542
.10.12989/sss.2015.15.6.1521
45.
Chen
,
X.
, and
He
,
Y.
,
2020
, “
Thermo-Magneto-Mechanical Coupling Dynamics of Magnetic Shape Memory Alloys
,”
Int. J. Plast.
,
129
, p.
102686
.10.1016/j.ijplas.2020.102686
46.
Savi
,
M. A.
,
2024
, “
Chaos Theory
,”
Lectures on Nonlinear Dynamics—Understanding Complex Systems
,
J. R. C.
Piqueira
,
C. E. N.
Mazzilli
,
C. P.
Pesce
, and
G. R.
Franzini
, eds.,
Springer
, Cham, Switzerland, pp.
283
299
.
You do not currently have access to this content.