Abstract

The generalized-α scheme has become the approach of choice for the time integration of the equations of motion of multibody systems. Despite its simplicity, this scheme presents drawbacks: the time-step size cannot be changed easily, making it difficult to implement time adaptivity, and the solution of periodic problems cannot be found easily. This paper explores an alternative approach based on the finite element method in time. The basic principles underpinning the approach are presented and both time-continuous and time-discontinuous approaches are investigated. Two types of Galerkin schemes will be presented here: the time-continuous and the time-discontinuous schemes. In the former, the displacement field is continuous across interelement boundaries, whereas discontinuities or “jumps” are allowed across interelement boundaries for the latter. Simple problems are treated to identify the best schemes. Families of schemes of various accuracies are presented. The first family, based on time-continuous elements, features schemes that do not present numerical dissipation. Asymptotic annihilation is achieved by the time-discontinuous elements that form the second family. The problem of kinematic constraints is treated within the framework of the finite element method in time. Special emphasis is devoted to the satisfaction of the kinematic constraints and their time derivative within a time element.

References

1.
Bailey
,
C. D.
,
1975
, “
Application of Hamilton's Law of Varying Action
,”
AIAA J.
,
13
(
9
), pp.
1154
1157
.10.2514/3.6966
2.
Leipholtz
,
H. H. E.
,
1982
, “
Space-Time Formulation of Hamilton's Law
,”
Mech. Res. Commun.
,
9
(
5
), pp.
117
323
.
3.
Johnson
,
C.
,
Nävert
,
U.
, and
Pitkäranta
,
V.
,
1984
, “
Finite Element Methods for Linear Hyperbolic Problems
,”
Comput. Methods Appl. Mech. Eng.
,
45
(
1–3
), pp.
285
312
.10.1016/0045-7825(84)90158-0
4.
Johnson
,
C.
, and
Szepessy
,
V.
,
1985
, “
Convergence of a Finite Element Method for a Nonlinear Hyperbolic Conservation Law
,”
Mathematics Department, Chalmers University of Technology
,
Göteborg, Sweden
, Report No.
1985
25
.
5.
Johnson
,
C.
,
1987
,
Numerical Solutions of Partial Differential Equations by the Finite Element Method
,
Cambridge University Press
,
Cambridge, UK
.
6.
Hughes
,
T. R. J.
, and
Hulbert
,
M.
,
1988
, “
Space-Time Finite Element Formulations for Elasto-Dynamics: Formulation and Error Estimates
,”
Comput. Methods Appl. Mech. Eng.
,
66
(
3
), pp.
339
363
.10.1016/0045-7825(88)90006-0
7.
Hulbert
,
M.
,
1989
, “
Space-Time Finite Element Methods for Second-Order Hyperbolic Equations
,” Ph.D. thesis,
Stanford University, Stanford, CA
.
8.
Hughes
,
T. J. R.
,
1983
, “
Analysis of Transient Algorithms With Particular Reference to Stability Behavior
,”
Computational Methods for Transient Analysis
,
T.
Belytschko
, and
T.
Hughes
, eds.,
North-Holland
,
Amsterdam
, The Netherlands, pp.
67
155
.
9.
Hulbert
,
G.
,
1992
, “
Time Finite Element Methods for Structural Dynamics
,”
Int. J. Numer. Methods Eng.
,
33
(
2
), pp.
307
331
.10.1002/nme.1620330206
10.
Borri
,
M.
,
1986
, “
Helicopter Rotor Dynamics by Finite Element Time Approximation
,”
Comput. Math. Appl.
,
12
(
1
), pp.
149
160
.10.1016/0898-1221(86)90092-1
11.
Bauchau
,
O. A.
, and
Hong
,
C. H.
,
1988
, “
Nonlinear Response and Stability Analysis of Beams Using Finite Elements in Time
,”
AIAA J.
,
26
(
9
), pp.
1135
1142
.10.2514/3.10021
12.
Bauchau
,
O. A.
, and
Theron
,
N. J.
,
1996
, “
Energy Decaying Scheme for Non-Linear Beam Models
,”
Comput. Methods Appl. Mech. Eng.
,
134
(
1–2
), pp.
37
56
.10.1016/0045-7825(96)01030-4
13.
Bottasso
,
C. L.
, and
Borri
,
M.
,
1998
, “
Integrating Finite Rotations
,”
Comput. Methods Appl. Mech. Eng.
,
164
(
3–4
), pp.
307
331
.10.1016/S0045-7825(98)00031-0
14.
Borri
,
M.
,
Bottasso
,
C. L.
, and
Trainelli
,
L.
,
2001
, “
Integration of Elastic Multibody Systems by Invariant Conserving/Dissipating Algorithms. Part I: Formulation
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
29–30
), pp.
3669
3699
.10.1016/S0045-7825(00)00286-3
15.
Lanczos
,
C.
,
1970
,
The Variational Principles of Mechanics
,
Dover Publications Inc
.,
New York
.
16.
Bauchau
,
O. A.
,
2011
,
Flexible Multibody Dynamics, Vol. 176 of Solid Mechanics and Its Applications
,
Springer
,
Dordrecht, The Netherlands
.
17.
Greenwood
,
D. T.
,
2003
,
Advanced Dynamics
,
Cambridge University Press
,
Cambridge, UK
.
18.
Borri
,
M.
,
Ghiringhelli
,
G. L.
,
Lanz
,
M.
,
Mantegazza
,
P.
, and
Merlini
,
T.
,
1985
, “
Dynamic Response of Mechanical Systems by a Weak Hamiltonian Formulation
,”
Comput. Struct.
,
20
(
1–3
), pp.
495
508
.10.1016/0045-7949(85)90098-7
19.
Laulusa
,
A.
, and
Bauchau
,
O. A.
,
2008
, “
Review of Classical Approaches for Constraint Enforcement in Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
1
), p.
011004
.10.1115/1.2803257
20.
Bauchau
,
O. A.
, and
Laulusa
,
A.
,
2008
, “
Review of Contemporary Approaches for Constraint Enforcement in Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
1
), p.
011005
.10.1115/1.2803258
21.
Bottasso
,
C. L.
,
Bauchau
,
O. A.
, and
Cardona
,
A.
,
2007
, “
Time-Step-Size-Independent Conditioning and Sensitivity to Perturbations in the Numerical Solution of Index-Three Differential Algebraic Equations
,”
SIAM J. Sci. Comput.
,
29
(
1
), pp.
397
414
.10.1137/050638503
22.
Bottasso
,
C. L.
,
Dopico
,
D.
, and
Trainelli
,
L.
,
2008
, “
On the Optimal Scaling of Index-Three DAEs in Multibody Dynamics
,”
Multibody Syst. Dyn.
,
19
(
1–2
), pp.
3
20
.10.1007/s11044-007-9051-9
23.
Bauchau
,
O. A.
,
Epple
,
A.
, and
Bottasso
,
C. L.
,
2009
, “
Scaling of Constraints and Augmented Lagrangian Formulations in Multibody Dynamics Simulations
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
2
), p.
021007
.10.1115/1.3079826
24.
Huynh
,
H. T.
,
2011
, “
Collocation and Galerkin Time-Stepping Methods
,”
NASA
,
Washington, DC
, Report No. TM
2011
216340
.
25.
Huynh
,
H. T.
,
2023
, “
Discontinuous Galerkin and Related Methods for ODE
,”
J. Sci. Comput.
,
96
(
2
), p.
51
.10.1007/s10915-023-02233-2
26.
Barlow
,
J.
,
1976
, “
Optimal Stress Locations in Finite Element Models
,”
Int. J. Numer. Methods Eng.
,
10
(
2
), pp.
243
251
.10.1002/nme.1620100202
27.
Cook
,
R. D.
,
Malkus
,
D. S.
, and
Plesha
,
M. E.
,
1989
,
Concept and Applications of the Finite Elements Method
,
Wiley
,
New York
.
28.
Grautschi
,
W.
,
2004
,
Orthogonal Polynomials. Computation and Approximation
,
Oxford University Press
,
New York
.
You do not currently have access to this content.