The problem of designing controllers for nonlinear time periodic systems via feedback linearization is addressed. The idea is to find proper coordinate transformations and state feedback under which the original system can be (exactly or approximately) transformed into a linear time periodic control system. Then a controller can be designed to guarantee the stability of the system. Our approach is designed to achieve local control of nonlinear systems with periodic coefficients desired to be driven either to a periodic orbit or to a fixed point. The system equations are represented by a quasi-linear system containing nonlinear monomials with periodic coefficients. Using near identity transformations and normal form theory, the original close loop problem is approximately transformed into a linear time periodic system with unknown gains. Then by using a symbolic computation method, the Floquet multipliers are placed in the desired locations in order to determine the control gains. We also give the sufficient conditions under which the system is feedback linearizable up to the rth order.

1.
Richards
,
J. A.
, 1983,
Analysis of Periodically Time-Varying Systems
,
Springer
, Berlin, Germany.
2.
Sinha
,
S. C.
,
Henrichs
,
J. T.
, and
Ravindra
,
B.
, 2000, “
A General Approach in the Design of Active Controllers for Nonlinear Systems Exhibiting Chaos
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
10
(
1
), pp.
165
178
.
3.
Sinha
,
S. C.
, and
Joseph
,
P.
, 1994, “
Control of General Dynamic Systems With Periodically Varying Parameters via Liapunov-Floquet Transformation
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
116
, pp.
650
658
.
4.
Sinha
,
S. C.
,
Gourdon
,
E.
, and
Zhang
,
Y.
, 2005, “
Control of Time-Periodic Systems via Symbolic Computation With Application to Chaos Control
,”
Commun. Nonlinear Sci. Numer. Simul.
1007-5704,
10
(
8
), pp.
835
854
.
5.
Sinha
,
S. C.
, and
Butcher
,
E. A.
, 1997, “
Symbolic Computation of Fundamental Solution Matrices for Time-Periodic Dynamical Systems
,”
J. Sound Vib.
0022-460X,
206
(
1
), pp.
61
85
.
6.
Deshmukh
,
V. S.
, and
Sinha
,
S. C.
, 2004, “
Control of Dynamic Systems With Time-Periodic Coefficients via the Lyapunov-Floquet Transformation and Backstepping Technique
,”
J. Vib. Control
1077-5463,
10
, pp.
1517
1533
.
7.
Marino
,
R.
, and
Tomei
,
P.
, 1998,
Nonlinear Control Design: Geometric, Adaptive, Robust
,
Prentice–Hall
, London, UK.
8.
Nijmeijer
,
N.
, and
Van der Schaft
,
A. J.
, 1995,
Nonlinear Dynamical Control Systems
,
Springer
, Berlin, Germany.
9.
Cheng
,
D.
,
Isidori
,
A.
,
Respondek
,
W.
, and
Tarn
,
T. J.
, 1988, “
Exact Linearization of Nonlinear System With Outputs
,”
Math. Syst. Theory
0025-5661,
21
, pp.
63
83
.
10.
Krener
,
A. J.
, 1988, “
Nonlinear Controller Design via Approximate Normal Forms
,”
Proceedings IMA Conference on Signal Processing
, Minneapolis, MN.
11.
Guardabassi
,
G. O.
, and
Savaresi
,
S. M.
, 2001, “
Approximate Linearization via Feedback—An Overview
,”
Automatica
0005-1098,
37
, pp.
1
15
.
12.
Arnold
,
V. I.
, 1988,
Geometrical Methods in the Theory of Ordinary Differential Equations
,
Springer
, New York.
13.
Sinha
,
S. C.
,
Pandiyan
,
R.
, and
Bibb
,
J. S.
, 1996, “
Liapunov-Floquet Transformation: Computation and Applications to Periodic Systems
,”
J. Vibr. Acoust.
0739-3717
118
, pp.
209
219
.
14.
Goriely
,
A.
, 1999,
Integrability and Nonintegrability of Dynamical Systems
,
World Scientific
, Singapore.
You do not currently have access to this content.