Abstract

In view of the large errors in the integer-order prediction model of the current giant magnetostrictive actuator (GMA), existing studies have shown that the fractional-order theory can improve the classical integer-order error situation. To this end, the Riemann–Liouville (R–L) fractional-order calculus theory is applied to the damping part of the GMA system; based on the averaging method and the power series method, the analytical and numerical solutions of the system are obtained, respectively, the motion of the GMA system is obtained through simulation, the parameters affecting the main resonance response of the system are analyzed as well as the motion characteristics of the system under the parameters, and the bifurcation and chaotic characteristics of the system are analyzed qualitatively and quantitatively. It is shown that the fractional-order model can improve the prediction accuracy of the system, the fractional order has a significant effect on the motion of the system, and the interval of the periodical motion parameter is less than an integer when the order of the damping term is (0,1), and the system can be induced to shift to periodic motion by changing the parameters.

References

1.
Yang
,
Z. J.
,
Li
,
J. H.
,
Zhou
,
Z. G.
,
Gong
,
J. X.
,
Bao
,
X. Q.
, and
Gao
,
X. X.
,
2022
, “
Recent Advances in Magnetostrictive Tb-Dy-Fe Alloys
,”
Metals
,
12
(
2
), p.
341
.10.3390/met12020341
2.
Yamaura
,
S.
,
Nakajima
,
T.
,
Kamata
,
Y.
,
Sasaki
,
T.
, and
Sekiguchi
,
T.
,
2020
, “
Production of Vibration Energy Harvester With Impact-Sliding Structure Using Magnetostrictive Fe-Co-V Alloy Rod
,”
J. Magn. Magn. Mater.
,
514
(
1
), p.
167260
.10.1016/j.jmmm.2020.167260
3.
Yu
,
C. F.
,
Wu
,
G.
,
Wang
,
Y.
,
Xiao
,
Z. H.
,
Duan
,
Y. Y.
, and
Chen
,
Z.
,
2022
, “
Design of Coaxial Integrated Macro-Micro Composite Actuator With Long-Stroke and High-Precision
,”
IEEE Access
,
10
, pp.
43501
43513
.10.1109/ACCESS.2022.3169506
4.
Li
,
Y. S.
,
2023
, “
Magnetic Circuit Optimization and Physical Modeling of Giant Magnetostrictive Actuator
,”
Shock Vib.
,
2023
, pp.
1
16
.10.1155/2023/7379276
5.
Li
,
Y. F.
,
Dong
,
X.
, and
Yu
,
X. D.
,
2023
, “
Dynamic Characteristic Model of Giant Magnetostrictive Transducer With Double Terfenol-D Rods
,”
Micromachines
,
14
(
6
), p.
1103
.10.3390/mi14061103
6.
Afzal
,
M.
,
Kari
,
L.
, and
Arteaga
,
I. L.
,
2020
, “
Adaptive Control of Normal Load at the Friction Interface of Bladed Disks Using Giant Magnetostrictive Material
,”
J. Intell. Mater. Syst. Struct.
,
31
(
8
), pp.
1111
1125
.10.1177/1045389X20910269
7.
Zhu
,
Y. C.
,
Yang
,
X. L.
, and
Wereley
,
N. M.
,
2016
, “
Research on Hysteresis Loop Considering the Prestress Effect and Electrical Input Dynamics for a Giant Magnetostrictive Actuator
,”
Smart Mater. Struct.
,
25
(
8
), p.
085030
.10.1088/0964-1726/25/8/085030
8.
Gao
,
X. H.
, and
Liu
,
Y. G.
,
2018
, “
Research of Giant Magnetostrictive Actuator's Nonlinear Dynamic Behaviours
,”
Nonlinear Dyn.
,
92
(
3
), pp.
793
802
.10.1007/s11071-018-4061-0
9.
Yan
,
H. B.
,
Gao
,
H.
,
Yang
,
G. W.
,
Hao
,
H. B.
,
Niu
,
Y.
, and
Liu
,
P.
,
2020
, “
Bifurcation and Chaos Characteristics of Hysteresis Vibration System of Giant Magnetostrictive Actuator
,”
Chin. Phys. B
,
29
(
2
), p.
020504
.10.1088/1674-1056/ab65b4
10.
Sylvain
,
Z. N.
,
Victor
,
K. T.
, and
Pierre
,
K. T.
,
2020
, “
Hysteretic Dynamics Inducing Coexistence of Attractors in a Thin Magnetostrictive Actuator System With Quintic Nonlinearity
,”
J. Magn. Magn. Mater.
,
507
, p.
166858
.10.1016/j.jmmm.2020.166858
11.
Chen
,
J. F.
,
2020
, “
Dynamics Analysis and Control of Fractional Nonlinear Systems
,” Ph.D. thesis,
Shijiazhuang Tiedao University
,
Shijiazhuang, HE, China
.
12.
Sun
,
X. X.
,
Zhu
,
A. L.
,
Yin
,
Z.
, and
Ji
,
P. F.
,
2023
, “
Hermite Finite Element Method for Time Fractional Order Damping Beam Vibration Problem
,”
Fractal Fract.
,
7
(
10
), p.
739
.10.3390/fractalfract7100739
13.
Xu
,
K.
,
Chen
,
L. P.
,
Lopes
,
A. M.
,
Wang
,
M. W.
,
Wu
,
R. C.
, and
Zhu
,
M.
,
2023
, “
Fractional-Order Zener Model With Temperature-Order Equivalence for Viscoelastic Dampers
,”
Fractal Fract.
,
7
(
10
), p.
714
.10.3390/fractalfract7100714
14.
Li
,
Z.
,
Yu
,
J. G.
,
Zhang
,
X. M.
, and
Elmaimouni
,
L.
,
2022
, “
Guided Wave Propagation in Functionally Graded Fractional Viscoelastic Plates: A Quadrature-Free Legendre Polynomial Method
,”
Mech. Adv. Mater. Struct.
,
29
(
16
), pp.
2284
2297
.10.1080/15376494.2020.1860273
15.
Cui
,
Z. J.
,
Shi
,
M.
, and
Wang
,
Z. H.
,
2021
, “
Bifurcation in a New Fractional Model of Cerebral Aneurysm at the Circle of Willis
,”
Int. J. Bifurcation Chaos
,
31
(
9
), p.
2150135
.10.1142/S0218127421501352
16.
Sylvain
,
Z. N.
,
Victor
,
K. T.
,
Bruno
,
N. G.
, and
Kisito
,
T. P.
,
2021
, “
Extreme Multistability in a Fractional-Order Thin Magnetostrictive Actuator (TMA)
,”
SeMA J.
,
78
(
3
), pp.
347
365
.10.1007/s40324-020-00238-7
17.
Liu
,
Z. D.
,
Liu
,
W. K.
,
Wang
,
P.
,
Li
,
Z.
,
Xu
,
Y. L.
,
Yang
,
X. F.
, and
Shu
,
F.
,
2023
, “
High-Precision Position Tracking Control of Giant Magnetostrictive Actuators Using Fractional-Order Sliding Mode Control With Inverse Prandtl-Ishlinskii Compensator
,”
Int. J. Precis. Eng. Manuf.
,
24
(
3
), pp.
379
393
.10.1007/s12541-022-00762-8
18.
Chen
,
B.
,
Qin
,
X. B.
,
Tang
,
B.
,
Liu
,
R.
,
Zhang
,
J. G.
, and
Wan
,
N. N.
,
2022
, “
Dynamic J-A Hysteresis Model Based on R-L Fractional Derivative and Its Characteristic Parameter Identification Algorithm
,”
J. Chin. Electr. Eng. Sci.
,
42
(
12
), pp.
4590
4603
.https://link.oversea.cnki.net/doi/10.13334/J.0258-8013.PCSEE.210942
19.
Lubich
,
C.
,
1983
, “
On the Stability of Linear Multistep Methods for Volterra Convolution Equations
,”
IMA J. Numer. Anal.
,
3
(
4
), pp.
439
465
.10.1093/imanum/3.4.439
20.
Akbar
,
M.
,
Nawaz
,
R.
,
Ahsan
,
S.
,
Nisar
,
K. S.
,
Shah
,
K.
,
Mahmoud
,
E. E.
, and
Alqarni
,
M. M.
,
2022
, “
Fractional Power Series Approach for the Solution of Fractional-Order Integro-Differential Equations
,”
Fractals
,
30
(
1
), p.
2240016
.10.1142/S0218348X22400163
21.
Kavyanpoor
,
M.
, and
Shokrollahi
,
S.
,
2019
, “
Dynamic Behaviors of a Fractional Order Nonlinear Oscillator
,”
J. King Saud Univ. Sci.
,
31
(
1
), pp.
14
20
.10.1016/j.jksus.2017.03.006
22.
Lu
,
W. S.
,
1990
,
Computational Design and Manufacture of Disc Spring
,
Fudan University Press
,
Shanghai, China
, Chap.
2
.
23.
Yan
,
M.
,
Hui
,
A. M.
,
Sun
,
Z. Q.
,
Zhang
,
X. Y.
,
Wang
,
K. P.
, and
Liu
,
H. C.
,
2021
, “
Vibration and Stability Analysis of Vibration Isolator With Opposed Disc Springs of Pre-Tightening Under Boundary Friction Condition
,”
J. Vib. Eng.
,
34
(
6
), pp.
1230
1239
.https://link.oversea.cnki.net/doi/10.16385/j.cnki.issn.1004-4523.2021.06.015
24.
Wang
,
A. M.
,
2020
, “
Research on Structural Design, System Modeling and Parameter Identification of Giant Magnetostrictive Exciter
,” Ph.D. thesis,
Lanzhou Jiaotong University
,
Lanzhou, GS, China
.
25.
Jumarie
,
G.
,
2009
, “
Laplace's Transform of Fractional Order Via the Mittag-Leffler Function and Modified Riemann-Liouville Derivative
,”
Appl. Math. Lett.
,
22
(
11
), pp.
1659
1664
.10.1016/j.aml.2009.05.011
26.
Wang
,
A. M.
,
Meng
,
J. J.
,
Xu
,
R. X.
, and
He
,
C. X.
,
2019
, “
Structural Optimization and Dynamic Performance of a Giant Magnetostrictive Vibration Exciter
,”
J. Vib. Shock
,
38
(
17
), pp.
184
190
.https://link.oversea.cnki.net/doi/10.13465/j.cnki.jvs.2019.17.025
27.
Fan
,
Y. H.
,
Jiao
,
Y. J.
, and
Li
,
X. L.
,
2023
, “
Dynamics Analysis for a Class of Fractional Duffing Systems With Nonlinear Time Delay Terms
,”
Math. Methods Appl. Sci.
,
46
(
13
), pp.
14576
14595
.10.1002/mma.9336
28.
Shen
,
Y. J.
,
Yang
,
S. P.
,
Xing
,
H. J.
, and
Gao
,
G. S.
,
2012
, “
Primary Resonance of Duffing Oscillator With Fractional-Order Derivative
,”
Int. J. Non-Linear Mech.
,
17
(
7
), pp.
3092
3100
.10.1016/j.cnsns.2011.11.024
29.
Bai
,
L.
,
2017
, “
Research on High-Precision Numerical Algorithms for Caputo Fractional-Order Differential Equations
,” Ph.D. thesis,
Northeast University
,
Shenyang, LN, China
.
30.
Seadawy
,
A. R.
,
Arshad
,
M.
, and
Lu
,
D. C.
,
2022
, “
The Weakly Nonlinear Wave Propagation of the Generalized Third-Order Nonlinear Schrodinger Equation and Its Applications
,”
Waves Random Complex Media
,
32
(
2
), pp.
819
831
.10.1080/17455030.2020.1802085
31.
Seadawy
,
A. R.
,
Arshad
,
M.
, and
Lu
,
D. C.
,
2020
, “
The Weakly Nonlinear Wave Propagation Theory for the Kelvin-Helmholtz Instability in Magnetohydrodynamics Flows
,”
Chaos, Solitons Fractals
,
139
, p.
110141
.10.1016/j.chaos.2020.110141
You do not currently have access to this content.