Skip Nav Destination
Issues
September 2024
ISSN 1555-1415
EISSN 1555-1423
In this Issue
Research Papers
Additional Natural Frequency of the Beam Carrying a Spring-Mass System: Lost and Found
J. Comput. Nonlinear Dynam. September 2024, 19(9): 091001.
doi: https://doi.org/10.1115/1.4065781
Topics:
Mode shapes
,
Springs
Full-Dimensional Proportional-Derivative Control Technique for Turing Pattern and Bifurcation of Delayed Reaction-Diffusion Bidirectional Ring Neural Networks
J. Comput. Nonlinear Dynam. September 2024, 19(9): 091002.
doi: https://doi.org/10.1115/1.4065881
Topics:
Artificial neural networks
,
Bifurcation
,
Control equipment
,
Delays
,
Diffusion (Physics)
,
Stability
Haar Wavelet Approach for the Mathematical Model on Hepatitis B Virus
J. Comput. Nonlinear Dynam. September 2024, 19(9): 091003.
doi: https://doi.org/10.1115/1.4065843
Topics:
Wavelets
,
Differential equations
Nonlinear Static and Dynamic Responses of a Floating Rod Pendulum
J. Comput. Nonlinear Dynam. September 2024, 19(9): 091004.
doi: https://doi.org/10.1115/1.4065899
Topics:
Dynamic response
,
Equilibrium (Physics)
,
Frequency response
,
Pendulums
,
Bifurcation
,
Density
,
Hydrostatics
,
Water
,
Equations of motion
A Posteriori Error Analysis of Defect Correction Method for Singular Perturbation Problems With Discontinuous Coefficient and Point Source
J. Comput. Nonlinear Dynam. September 2024, 19(9): 091005.
doi: https://doi.org/10.1115/1.4065900
Topics:
Error analysis
,
Errors
,
Stability
,
Numerical analysis
,
Boundary layers
An Improved Wiener Path Integral Approach for Stochastic Response Estimation of Nonlinear Systems Under Non-White Excitation
J. Comput. Nonlinear Dynam. September 2024, 19(9): 091006.
doi: https://doi.org/10.1115/1.4065959
Topics:
Density
,
Excitation
,
Nonlinear systems
,
Path integrals
,
Probability
,
Fluctuations (Physics)
Technical Brief
Harmonic Response of a Highly Flexible Thin Long Cantilever Beam: A Semi-Analytical Approach in Time-Domain With ANCF Modeling and Experimental Validation
J. Comput. Nonlinear Dynam. September 2024, 19(9): 094501.
doi: https://doi.org/10.1115/1.4065880
Topics:
Cantilever beams
,
Damping
,
Gravity (Force)
,
Modeling
,
Deflection
,
Excitation
,
Variational techniques
,
Finite element methods
,
Computation
Email alerts
RSS Feeds
Input–Output Finite-Time Bipartite Synchronization for Multiweighted Complex Dynamical Networks Under Dynamic Hybrid Triggering Mechanism
J. Comput. Nonlinear Dynam (November 2024)
A Universal and Efficient Quadrilateral Shell Element Based on Absolute Nodal Coordinate Formulation for Thin Shell Structures With Complex Surfaces
J. Comput. Nonlinear Dynam (November 2024)
Dynamic Simulation and Collision Detection for Flexible Mechanical Systems With Contact Using the Floating Frame of Reference Formulation
J. Comput. Nonlinear Dynam (November 2024)
Design and Analysis of An Automotive Crash Box Using Strut Based Lattice Structures
J. Comput. Nonlinear Dynam
An Efficient Numerical Approach to Solve Fractional Coupled Boussinesq Equations
J. Comput. Nonlinear Dynam