Abstract

This paper presents novel algorithms and visualization tools for avoiding collisions and minimizing cycle time in multi-robot stations by velocity tuning of robot motions. These tools have the potential to support product/manufacturing engineers in the practical task of adding synchronization instructions to robot programs to overcome the challenges in terms of product design, cycle time, quality control, and maintenance including re-usability of coordination schemes. We propose a range of techniques to achieve that, when additional requirements make the best coordination strategy hard to be chosen. Indeed, our main contributions are (i) considering and minimizing delays introduced by limitation in hardware synchronization mechanisms, (ii) highlighting insights on the relationship between a 3D working space and a path coordination space, and (iii) a computational tool for visualization of shared areas in both work space and path coordination space. Different strategies based on the developed algorithms are evaluated by successfully automatically solving industrial test cases from inspection measurement applications in the automotive industry. A study about how cycle time robustness is significantly influenced by variation in the robot motion execution times is also given.

References

1.
Segeborn
,
J.
,
Segerdahl
,
D.
,
Carlson
,
J. S.
,
Carlsson
,
A.
, and
Söderberg
,
R.
,
2010
, “
Load Balancing of Welds in Multi Station Sheet Metal Assembly Lines
,”
ASME International Mechanical Engineering Congress and Exposition
,
Vancouver, Canada
,
Nov. 12–18
, Vol.
44274
, pp.
625
630
.
2.
Hömberg
,
D.
,
Landry
,
C.
,
Skutella
,
M.
, and
Welz
,
W. A.
,
2017
, “Automatic Reconfiguration of Robotic Welding Cells,”
Math for the Digital Factory
,
Springer International Publishing
,
Berlin
, pp.
183
203
.
3.
Spensieri
,
D.
,
Carlson
,
J. S.
,
Ekstedt
,
F.
, and
Bohlin
,
R.
,
2016
, “
An Iterative Approach for Collision Free Routing and Scheduling in Multirobot Stations
,”
IEEE Trans. Auto. Sci. Eng.
,
13
(
2
), pp.
950
962
. 10.1109/TASE.2015.2432746
4.
Pellegrinelli
,
S.
,
Pedrocchi
,
N.
,
Tosatti
,
L. M.
,
Fischer
,
A.
, and
Tolio
,
T.
,
2017
, “
Multi-Robot Spot-Welding Cells for Car-Body Assembly: Design and Motion Planning
,”
Rob. Comput.-Int. Manufact.
,
44
(
C
), pp.
97
116
. 10.1016/j.rcim.2016.08.006
5.
Lopes
,
T. C.
,
Sikora
,
C.
,
Molina
,
R. G.
,
Schibelbain
,
D.
,
Rodrigues
,
L.
, and
Magatão
,
L.
,
2017
, “
Balancing a Robotic Spot Welding Manufacturing Line: An Industrial Case Study
,”
Eur. J. Operat. Res.
,
263
(
3
), pp.
1033
1048
. 10.1016/j.ejor.2017.06.001
6.
Skutella
,
M.
, and
Welz
,
W.
,
2011
, “Route Planning for Robot Systems,”
Operations Research Proceedings 2010
,
Springer
,
Berlin, Heidelberg
, pp.
307
312
. https://doi.org/10.1007/978-3-642-20009-0_49
7.
Rambau
,
J.
, and
Schwarz
,
C.
,
2014
, “
Solving a Vehicle Routing Problem With Resource Conflicts and Makespan Objective With An Application in Car Body Manufacturing
,”
Optim. Methods Soft.
,
29
(
2
), pp.
353
375
. 10.1080/10556788.2013.768993
8.
Landry
,
C.
,
Henrion
,
R.
,
Hömberg
,
D.
,
Skutella
,
M.
, and
Welz
,
W.
,
2013
, “
Task Assignment, Sequencing and Path-Planning in Robotic Welding Cells
,”
18th International Conference on Methods and Models in Automation Robotics (MMAR)
, pp.
252
257
.
9.
Xin
,
J.
,
Meng
,
C.
,
Schulte
,
F.
,
Peng
,
J.
,
Liu
,
Y.
, and
Negenborn
,
R. R.
,
2020
, “
A Time-Space Network Model for Collision-Free Routing of Planar Motions in a Multirobot Station
,”
IEEE Trans. Ind. Inform.
,
16
(
10
), pp.
6413
6422
. 10.1109/TII.2020.2968099
10.
Kant
,
K.
, and
Zucker
,
S.
,
1986
, “
Toward Efficient Trajectory Planning: The Path-Velocity Decomposition
,”
Int. J. Rob. Res. - IJRR
,
5
(
3
), pp.
72
89
. 10.1177/027836498600500304
11.
O’Donnell
,
P. A.
, and
Lozano-Perez
,
T.
,
1989
, “
Deadlock-Free and Collision-Free Coordination of Two Robot Manipulators
,”
Proceedings of the 1989 International Conference on Robotics and Automation
, Vol.
1
, pp.
484
489
.
12.
Akella
,
S.
, and
Hutchinson
,
S.
,
2002
, “
Coordinating the Motions of Multiple Robots With Specified Trajectories
,”
Proceedings of the 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292)
,
Washington, DC
, Vol
1
, pp.
624
631
.
13.
Simeon
,
T.
,
Leroy
,
S.
, and
Laumond
,
J. P.
,
2002
, “
Path Coordination for Multiple Mobile Robots: A Resolution-Complete Algorithm
,”
IEEE. Trans. Rob. Autom.
,
18
(
1
), pp.
42
49
. 10.1109/70.988973
14.
Montaño
,
A.
, and
Suárez
,
R.
,
2016
, “
Coordination of Several Robots Based on Temporal Synchronization
,”
Rob. Comput.-Int. Manufact.
,
42
(
C
), pp.
73
85
. 10.1016/j.rcim.2016.05.008
15.
Glorieux
,
E.
,
Riazi
,
S.
, and
Lennartson
,
B.
,
2018
, “
Productivity/Energy Optimisation of Trajectories and Coordination for Cyclic Multi-Robot Systems
,”
Rob. Comput.-Int. Manufact.
,
49
, pp.
152
161
. 10.1016/j.rcim.2017.06.012
16.
Beuke
,
F.
,
Alatartsev
,
S.
,
Jessen
,
S.
, and
Verl
,
A.
,
2018
, “
Responsive and Reactive Dual-Arm Robot Coordination
,”
2018 IEEE International Conference on Robotics and Automation (ICRA)
,
Brisbane, QLD, Australia
, pp.
316
322
.
17.
Olmi
,
R.
,
Secchi
,
C.
, and
Fantuzzi
,
C.
,
2011
, “
Coordination of Industrial AGVs
,”
Int. J. Vehicle Auto. Syst.
,
9
(
1/2
), pp.
5
25
. 10.1504/IJVAS.2011.038177
18.
Zhong
,
M.
,
Yang
,
Y.
,
Sun
,
S.
,
Zhou
,
Y.
,
Postolache
,
O.
, and
Ge
,
Y.-E.
,
2020
, “
Priority-Based Speed Control Strategy for Automated Guided Vehicle Path Planning in Automated Container Terminals
,”
Trans. Inst. Measure. Control
,
42
(
16
), pp.
3079
3090
. 10.1177/0142331220940110
19.
Pallottino
,
L.
,
Feron
,
E.
, and
Bicchi
,
A.
,
2002
, “
Conflict Resolution Problems for Air Traffic Management Systems Solved With Mixed Integer Programming
,”
IEEE Trans. Intell. Trans. Syst.
,
3
(
1
), pp.
3
11
. 10.1109/6979.994791
20.
Åblad
,
E.
,
Spensieri
,
D.
,
Bohlin
,
R.
, and
Carlson
,
J. S.
,
2018
, “
Intersection-Free Geometrical Partitioning of Multirobot Stations for Cycle Time Optimization
,”
IEEE Trans. Auto. Sci. Eng.
,
15
(
2
), pp.
842
851
. 10.1109/TASE.2017.2761180
21.
LaValle
,
S. M.
,
2006
,
Planning Algorithms
,
Cambridge University Press
,
New York, NY
.
22.
Hermansson
,
T.
,
Carlson
,
J.
,
Linn
,
J.
, and
Kressin
,
J.
,
2021
, “
Quasi-Static Path Optimization for Industrial Robots With Dress Packs
,”
Rob. Comput.-Int. Manufact.
,
68
, p.
102055
. 10.1016/j.rcim.2020.102055
23.
Ericson
,
C.
,
2004
,
Real-Time Collision Detection
,
CRC Press Inc
,
USA
.
24.
Åblad
,
E.
,
Spensieri
,
D.
,
Bohlin
,
R.
, and
Strömberg
,
A. B.
,
2021
, “
Continuous Collision Detection of Pairs of Robot Motions Under Velocity Uncertainty
,”
IEEE Trans. Rob.
,
1
, pp.
1
12
.
25.
Pinedo
,
M. L.
,
2008
,
Scheduling: Theory, Algorithms, and Systems
, 3rd ed,
Springer Publishing Company, Incorporated
.
26.
Kobetski
,
A.
,
Spensieri
,
D.
, and
Fabian
,
M.
,
2006
, “
Scheduling Algorithms for Optimal Robot Cell Coordination – A Comparison
,”
2006 IEEE International Conference on Automation Science and Engineering
,
Shanghai, China
, pp.
381
386
.
27.
Spensieri
,
D.
,
Bohlin
,
R.
, and
Carlson
,
J. S.
,
2013
, “
Coordination of Robot Paths for Cycle Time Minimization
,”
2013 IEEE International Conference on Automation Science and Engineering (CASE)
,
Madison, WI
, pp.
522
527
.
28.
Spensieri
,
D.
,
Åblad
,
E.
,
Bohlin
,
R.
,
Carlson
,
J. S.
, and
Söderberg
,
R.
,
2021
, “
Modeling and Optimization of Implementation Aspects in Industrial Robot Coordination
,”
Rob. Comput.-Int. Manufact.
,
69
, p.
102097
. 10.1016/j.rcim.2020.102097
29.
Bohlin
,
R.
, and
Kavraki
,
L. E.
,
2000
, “
Path Planning Using Lazy PRM
,”
IEEE ICRA
,
San Francisco, CA
,
Apr. 24–28
, pp.
521
528
.
You do not currently have access to this content.