Geometric data interoperability is critical in industrial applications where geometric data are transferred (translated) among multiple modeling systems for data sharing and reuse. A big obstacle in data translation lies in that geometric data are usually imprecise and geometric algorithm precisions vary from system to system. In the absence of common formal principles, both industry and academia embraced ad hoc solutions, costing billions of dollars in lost time and productivity. This paper explains how the problem of interoperability, and data translation in particular, may be formulated and studied in terms of a recently developed theory of ε-solidity. Furthermore, a systematic classification of problems in data translation shows that in most cases ε-solids can be maintained without expensive and arbitrary geometric repairs.

1.
Brunnermeier
,
S. B.
, and
Martin
,
S. A.
, 1999, “
Interoperability Cost Analysis of the U. S. Automotive Supply Chain
,” Tech. Rep., Research Triangle Institute, Research Triangle Park, NC, March.
2.
Spitz
,
S.
, and
Rappoport
,
A.
, 2004, “
Integrated Feature-Based and Geometric CAD Data Exchange
,”
Proceedings of the 9th ACM Symposium on Solid Modeling and Applications
, Genova, Italy, pp.
183
190
.
3.
Shapiro
,
V.
, 1997, “
Maintenance of Geometric Representations Through Space Decompositions
,”
Int. J. Comput. Geom. Appl.
0218-1959,
7
(
4
), pp.
383
418
.
4.
Hoffmann
,
C. M.
, and
Juan
,
R.
, 1993, “
Erep: An Editable, High-Level Representation for Geometric Design and Analysis
,” in
Geometric Modeling for Product Realization
,
P. R.
Wilson
,
M. J.
Wozny
, and
M. J.
Pratt
, eds.,
North-Holland
,
Amsterdam
, pp.
129
164
.
5.
Chen
,
X.
, and
Hoffmann
,
C. M.
, 1995, “
Towards Feature Attachment
,”
Comput.-Aided Des.
0010-4485,
27
(
9
), pp.
695
702
.
6.
Shapiro
,
V.
, and
Vossler
,
D. L.
, 1995, “
What is a Parametric Family of Solids?
Proceedings of the 3rd ACM Symposium on Solid Modeling and Applications
, Salt Lake City, Utah, pp.
43
54
.
7.
Rappoport
,
A.
, 1997, “
The Generic Geometric Complex (GGC): A Modeling Scheme for Families of Decomposed Pointsets
,”
Proceedings of the 4th ACM Symposium on Solid Modeling and Applications
, Atlanta, Georgia, pp.
19
30
.
8.
Armstrong
,
C.
,
Bowyer
,
A.
,
Cameron
,
S.
,
Corney
,
J.
,
Jared
,
G.
,
Martin
,
R.
,
Middleditch
,
A.
,
Sabin
,
M.
, and
Salmon
,
J.
, 2000,
Djinn: A Geometric Interface for Solid Modeling
,
Information Geometers
, Winchester.
9.
Raghothama
,
S.
, and
Shapiro
,
V.
, 1998, “
Boundary Representation Deformation in Parametric Solid Modeling
,”
ACM Trans. Graphics
0730-0301,
17
(
4
), pp.
259
286
.
10.
Bidarra
,
R.
,
de Kraker
,
K. J.
, and
Bronsvoort
,
W. F.
, 1998, “
Representation and Management of Feature Information in a Cellular Model
,”
Comput.-Aided Des.
0010-4485,
30
(
4
), pp.
301
313
.
11.
Bidarra
,
R.
, and
Bronsvoort
,
W. F.
, 2000, “
Semantic Feature Modelling
,”
Comput.-Aided Des.
0010-4485,
32
(
3
), pp.
201
225
.
12.
Raghothama
,
S.
, and
Shapiro
,
V.
, 2002, “
Topological Framework for Part Families
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
2
(
4
), pp.
246
255
.
13.
Requicha
,
A. A. G.
, 1980, “
Representations for Rigid Solids: Theory, Methods and Systems
,”
ACM Comput. Surv.
0360-0300,
12
(
4
), pp.
437
464
.
14.
Qi
,
J.
, and
Shapiro
,
V.
, 2004, “
ε-Solidity in Geometric Data Translation
,” Tech. Rep. SAL 2004-2, Spatial Automation Laboratory, University of Wisconsin–Madison, June.
15.
Qi
,
J.
, and
Shapiro
,
V.
, 2005, “
Epsilon-Regular Sets and Intervals
,”
IEEE International Conference on Shape Modeling and Applications
,
MIT
, Cambridge, MA, pp.
308
317
.
16.
Yap
,
C.
, 1997, “
Towards Exact Geometric Computation
,”
Comput. Geom.
0925-7721,
7
(
1–2
), pp.
3
23
.
17.
Fortune
,
S.
, 1995, “
Polyhedral Modelling With Exact Arithmetic
,”
Proceedings of the 3rd ACM Symposium on Solid Modeling and Applications
, Salt Lake City, Utah, pp.
225
234
.
18.
Keyser
,
J.
,
Krishnan
,
S.
, and
Manocha
,
D.
, 1997, “
Efficient and Accurate B-rep Generation of Low Degree Sculptured Solids Using Exact Arithmetic
,”
Proceedings of the 4th ACM Symposium on Solid Modeling and Applications
, Atlanta, Georgia, pp.
42
55
.
19.
Guibas
,
L.
,
Salesin
,
D.
, and
Stolfi
,
J.
, 1989, “
Epsilon Geometry: Building Robust Algorithms From Imprecise Computations
,”
Proceedings of the Fifth ACM Symposium on Computational Geometry
, Saarbrüchen, West Germany, pp.
208
217
.
20.
Edalat
,
A.
, and
Lieutier
,
A.
, 1999, “
Foundation of a Computable Solid Modeling
,”
Proceedings of the 5th ACM Symposium on Solid Modeling and Applications
, Ann Arbor, Michigan, pp.
278
284
.
21.
Edalat
,
A.
, and
Lieutier
,
A.
, 2002, “
Foundation of a Computable Solid Modelling
,”
Theor. Comput. Sci.
0304-3975,
284
(
2
), pp.
319
345
.
22.
Sakkalis
,
T.
,
Shen
,
G.
, and
Patrikalakis
,
N. M.
, 2001, “
Topological and Geometric Properties of Interval Solid Models
,”
Graphical Models
1524-0703,
63
(
3
), pp.
163
175
.
23.
Shen
,
G.
,
Sakkalis
,
T.
, and
Patrikalakis
,
N. M.
, 2001, “
Analysis of Boundary Representation Model Rectification
,”
Proceedings of the 6th ACM Symposium on Solid Modeling and Applications
, Ann Arbor, Michigan, pp.
149
158
.
24.
Peters
,
T. J.
,
Bisceglio
,
J.
,
Ferguson
,
D. R.
,
Hoffmann
,
C. M.
,
Maekawa
,
T.
,
Patrikalakis
,
N. M.
,
Sakkalis
,
T.
, and
Stewart
,
N. F.
, 2004, “
Computational Topology for Regular Closed Sets (Within the I-TANGO Project)
,”
Topol. Atlas Invited Contrib.
,
9
(
1
), pp.
1
12
.
25.
Segal
,
M.
, 1990, “
Using Tolerances to Guarantee Valid Polyhedral Modeling Results
,”
Comput. Graph.
0097-8930,
24
(
4
), pp.
105
114
.
26.
Fang
,
S.
,
Brüderlin
,
B.
, and
Zhu
,
X.
, 1993, “
Robustness in Solid Modeling: A Tolerance-Based Intuitionistic Approach
,”
Comput.-Aided Des.
0010-4485,
25
(
9
), pp.
567
576
.
27.
Jackson
,
D. J.
, 1995, “
Boundary Representation Modelling With Local Tolerancing
,”
Proceedings of the 3rd ACM Symposium on Solid Modeling and Applications
, Salt Lake City, Utah, pp.
247
253
.
28.
ACIS
, 1998,
ACIS Documentation, Version 7
,
Spatial Technologies
, Boulder Heights, CO.
29.
Parasolid
, 2003,
Parasolid Documentation, Version 15
,
EDS
, Maryland Heights, MO.
30.
Barequet
,
G.
, and
Sharir
,
M.
, 1995, “
Filling Gaps in the Boundary of a Polyhedron
,”
Comput. Aided Geom. Des.
0167-8396,
12
(
2
), pp.
207
229
.
31.
Barequet
,
G.
,
Duncan
,
C. A.
, and
Kumar
,
S.
, 1998, “
RSVP: A Geometric Toolkit for Controlled Repair of Solid Models
,”
IEEE Trans. Vis. Comput. Graph.
1077-2626,
4
(
2
), pp.
162
177
.
32.
Bøhn
,
J. H.
, and
Wozny
,
M. J.
, 1993, “
A Topology-Based Approach for Shell-Closure
,” in
Geometric Modeling for Product Realization
,
P. R.
Wilson
,
M. J.
Wozny
, and
M. J.
Pratt
, eds.,
North-Holland
, Amsterdam, pp.
297
319
.
33.
Bøhn
,
J. H.
, 1995, “
Removing Zero-Volume Parts From CAD Models for Layered Manufacturing
,”
IEEE Comput. Graphics Appl.
0272-1716,
15
(
6
), pp.
27
34
.
34.
Murali
,
T. M.
, and
Funkhouser
,
T. A.
, 1997, “
Consistent Solid and Boundary Representations From Arbitrary Polygonal Data
,”
Proceedings of the 1997 Symposium on Interactive 3D Graphics
, Providence, RI, pp.
155
162
.
35.
Sheng
,
X.
, and
Meier
,
I. R.
, 1995, “
Generating Topological Structures for Surface Models
,”
IEEE Comput. Graphics Appl.
0272-1716,
15
(
6
), pp.
35
41
.
36.
Weihe
,
K.
, and
Willhalm
,
T.
, 2000, “
Reconstructing the Topology of a CAD Model—a Discrete Approach
,”
Algorithmica
0178-4617,
26
(
1
), pp.
126
147
.
37.
Clark
,
A. L.
, and
Staley
,
S. M.
, 1995, “
STEP AP203 Data Exchange Study
,”
Proceedings of the 3rd ACM Symposium on Solid Modeling and Applications
, Salt Lake City, Utah, pp.
213
224
.
38.
Frechette
,
S.
, 1996, “
Interoperabilitiy Requirements for CAD Data Transfer in the AutoSTEP Project
,” Tech. Rep. NISTIR 5844, National Institute of Standards and Technology, Gaithersburg, MD.
39.
Butlin
,
G.
, and
Stops
,
C.
, 1996, “
CAD Data Repair
,”
Proceedings of the 5th International Meshing Roundtable
, Pittsburgh, PA, pp.
7
12
.
40.
Krause
,
F.-L.
,
Stiel
,
C.
, and
Lüddemann
,
J.
, 1997, “
Processing of CAD-Data—Conversion, Verification and Repair
,”
Proceedings of the 4th ACM Symposium on Solid Modeling and Applications
, Atlanta, Georgia, pp.
248
254
.
41.
Peters
,
T. J.
,
Stewart
,
N. F.
,
Ferguson
,
D. R.
, and
Fussell
,
P. S.
, 1997, “
Algorithmic Tolerances and Semantics in Data Exchange
,”
Proceedings of the 13th ACM Symposium on Computational Geometry
, Nice, France, pp.
403
405
.
42.
ISO 10303, 1994,
Industrial Automation Systems and Integration—Product Data Representation and Exchange
. ISO.
43.
Shapiro
,
V.
, 2002, “
Solid Modeling
,” in
Handbook of Computer Aided Geometric Design
,
G.
Farin
,
J.
Hoschek
, and
M.-S.
Kim
, eds.,
Elsevier Science
,
Amsterdam
, pp.
473
518
.
44.
Hounshell
,
D.
, 1984,
From the American System to Mass Production, 1800–1932
.
The Johns Hopkins U. P.
45.
Woodbury
,
R.
, 1972, “
The Legend of Eli Whitney and Interchangeable Parts
,” in
Technology and Culture: An Anthology
,
M.
Kransberg
, and
W. H.
Davenport
, eds.,
Schocken
,
New York
, pp.
318
335
.
You do not currently have access to this content.