Abstract

We introduce a smooth approximation of the minmax operations, called signed approximate real distance function (SARDF), for maintaining an approximate signed distance function in constructive shape modeling. We apply constructive distance-based shape modeling to design objects with heterogeneous material distribution in the constructive hypervolume model framework. The introduced distance approximation helps intuitively model material distributions parametrized by distances to so-called material features. The smoothness of the material functions, provided here by the smoothness of the defining function for the shape, helps to avoid undesirable singularities in the material distribution, like stress or concentrations. We illustrate application of the SARDF operations by two- and three-dimensional heterogeneous object modeling case studies.

References

1.
Ricci
,
A.
, 1973, “
A Constructive Geometry for Computer Graphics
,”
Comput. J.
0010-4620,
16
(
2
), pp.
157
160
.
2.
Sabin
,
M.
, 1968, “
The Use of Potential Surfaces for Numerical Geometry
,” Technical Report No. VTO/MS/153.
3.
Kumar
,
V.
, and
Dutta
,
D.
, 1997, “
An Approach to Modeling Multi-Material Objects
,”
Fourth Symposium on Solid Modeling and Applications
, pp.
336
345
.
4.
Kumar
,
V.
,
Burns
,
D.
,
Dutta
,
D.
, and
Hoffman
,
C.
, 1999, “
A Framework for Object Modeling
,”
CAD
0010-4485,
31
(
9
), pp.
541
546
.
5.
Bhashyam
,
S.
,
Shin
,
K. H.
, and
Dutta
,
D.
, 2000, “
An Integrated CAD System for Design of Heterogeneous Objects
,”
Rapid Prototyping J.
1355-2546,
6
(
2
), pp.
119
135
.
6.
Chen
,
K.
, and
Feng
,
X.
, 2003, “
Computer-Aided Design Method for the Components Made of Heterogeneous Materials
,”
CAD
0010-4485,
35
(
5
), pp.
453
466
.
7.
Biswas
,
A.
,
Shapiro
,
V.
, and
Tsukanov
,
I.
, 2004, “
Heterogeneous Material Modeling With Distance Fields
,”
Comput. Aided Geom. Des.
0167-8396,
21
(
3
), pp.
215
242
.
8.
Requicha
,
A.
, 1980, “
Representations for Rigid Solids: Theory, Methods, and Systems
,”
ACM Comput. Surv.
0360-0300,
12
(
4
), pp.
437
464
.
9.
Nielson
,
G.
, 2000, “
Volume Modelling
,”
Volume Graphics
,
M.
Chen
,
A.
Kaufman
, and
R.
Yagel
, eds.,
Springer-Verlag
, New York, pp.
29
48
.
10.
Pasko
,
A.
,
Adzhiev
,
V.
,
Schmitt
,
B.
, and
Schlick
,
C.
, 2001, “
Constructive Hypervolume Modeling
,”
Graphical Models
1524-0703,
63
(
6
), pp.
413
442
.
11.
Pasko
,
A.
,
Adzhiev
,
V.
,
Sourin
,
A.
, and
Savchenko
,
V.
, 1995, “
Function Representation in Geometric Modeling: Concept, Implementation and Applications
,”
Visual Comput.
0178-2789,
11
(
8
), pp.
429
446
.
12.
Rvachev
,
V.
, 1963, “
On the Analytical Description of Some Geometric Objects
,”
Ukranian Academy of Sciences
,
153
(
4
), pp.
765
767
.
13.
Qian
,
X.
, and
Dutta
,
D.
, 2001, “
Physics Based B-Spline Heterogeneous Object Modeling
,” in
ASME Design Engineering Technical Conference
,
Pittsburgh.
14.
Jackson
,
T. R.
, 2000, “
Analysis of Functionally Graded Material Object Representation Methods
,” Ph.D thesis, MIT, Ocean Engineering Department.
15.
Siu
,
Y. K.
, and
Tan
,
S. T.
, 2002, “
Modeling the Material Grading and Structures of Heterogeneous Objects for Layered Manufacturing
,”
CAD
0010-4485,
34
, pp.
705
716
.
16.
Liu
,
H.
,
Cho
,
W.
,
Jackson
,
T. R.
,
Patrikalakis
,
N. M.
,
, and
Sachs
,
E. M.
, 2000, “
Algorithms for Design and Interrogation of Functionally Gradient Material Objects
,” in
Proceedings of ASME 2000 IDETC/CIE 2000 ASME Design Automation Conference
,
Baltimore, MD.
17.
Frisken
,
S.
,
Perry
,
R.
,
Rockwood
,
A.
, and
Jones
,
T.
, 2000, “
Adaptively Sampled Distance Fields: a General Representation of Shape for Computer Graphics
,” in
Proceedings of the 27th Annual Conference on Computer Graphics and Interactive
Techniques,
ACM Press/Addison–Wesley, Reading
, MA, pp.
249
254
.
18.
Cohen-Or
,
D.
,
Levin
,
D.
, and
Solomovic
,
A.
, 1998, “
Three-Dimensional Distance Field Metamorphosis
,”
ACM Trans. Graphics
0730-0301,
17
(
2
), pp.
116
141
.
19.
Jones
,
M.
, and
Chen
,
M.
, 1994, “
A New Approach to the Construction of Surfaces From Contour Data
,”
Comput. Graph. Forum
0167-7055,
13
(
3
), pp.
75
84
.
20.
Hart
,
J.
, 1996, “
Sphere Tracing: A Geometric Method for the Antialiased Ray Tracing of Implicit Surfaces
,”
Visual Comput.
0178-2789,
12
(
10
), pp.
527
545
.
21.
Zhou
,
Y.
,
Kaufman
,
A.
, and
Toga
,
A.
, 1998, “
3d Skeleton and Centerline Generation Based on an Approximate Minimum Distance Field
,”
Visual Comput.
0178-2789,
14
(
7
), pp.
303
314
.
22.
Goldman
,
R. N.
, 1983, “
Two Approaches to a Computer Model for Quadric Surfaces
,”
IEEE Comput. Graphics Appl.
0272-1716,
3
(
6
), pp.
21
24
.
23.
Satherley
,
R.
, and
Jones
,
M.
, 2001, “
Hybrid Distance Field Computation
,” Volume Graphics, pp.
195
209
.
24.
Zhao
,
H.
, 2005, “
A Fast Sweeping Method for Eikonal Equations
,”
Math. Comput.
0025-5718,
74
, pp.
603
627
.
25.
Tsai
,
Y. R.
, 2002, “
Rapid and Accurate Computation of the Distance Function Using Grids
,”
J. Comput. Phys.
0021-9991,
178
(
1
), pp.
175
195
.
26.
Roessl
,
C.
,
Zeilfelder
,
F.
,
Nurnberger
,
G.
, and
Seidel
,
H.-P
, 2004, “
Spline Approximation of General Volumetric Data
,” ACM Solid Modeling.
27.
Sethian
,
J.
, 1999,
Level-Set Methods and Fast Marching Methods
,
Cambridge University Press
, Cambridge.
28.
Zhao
,
H.
,
Osher
,
S.
, and
Fedkiw
,
R.
, 2001, “
Implicit Surface Reconstruction and Deformation Using the Level-Set Method
,” in
the first IEEE Workshop on Variational and Level-Set Methods in Computer Vision
,
Canada.
29.
Ohtake
,
Y.
,
Belyaev
,
A.
,
Alexa
,
M.
,
Turk
,
G.
, and
Seidel
,
H.-P.
, 2003, “
Multi-Level Partition of Unity Implicits
,”
ACM Trans. Graphics
0730-0301,
22
(
3
), pp.
463
470
.
30.
Wang
,
M. Y.
, and
Wang
,
X.
, 2005, “
A Level-Set Based Variational Method for Design and Optimization of Heterogeneous Objects
,”
CAD
0010-4485, special issue on “Heterogeneous Object Models and Their Applications,”
37
(
3
), pp.
321
337
.
31.
Biswas
,
A.
, and
Shapiro
,
V.
, 2004, “
Approximate Distance Fields with Non-Vanishing Gradients
,”
Graphical Models
1524-0703,
66
(
3
), pp.
133
159
.
32.
Buchele
,
S.
, and
Crawford
,
R.
, 2003, “
Three-Dimensional Half Space Constructive Solid Geometry Tree Construction From Implicit Boundary Representations
,” in
Proceedings of the Eighth ACM Symposium on Solid Modeling and Applications, ACM Press
, pp.
135
144
.
33.
Shapiro
,
V.
, and
Vossler
,
D.
, 1993, “
Separation for Boundary to Csg Conversion
,”
ACM Trans. Graphics
0730-0301,
12
(
1
), pp.
35
55
.
34.
Barthe
,
L.
,
Dodgson
,
N.
,
Sabin
,
M.
,
Wyvill
,
B.
, and
Gaildrat
,
V.
, 2003, “
Two-Dimensional Potential Fields for Advanced Implicit Modeling Operators
,”
Comput. Graph. Forum
1067-7055,
22
(
1
), pp.
23
33
.
35.
Hart
,
J.
, 1994, “
Distance to an Ellipsoid
,”
Graphics Gems IV
,
P.
Heckbert
, ed.,
Academic
, Boston, pp.
113
119
.
36.
Shin
,
K.-H
, and
Dutta
,
D.
, 2001, “
Constructive Representation of Heterogeneous Objects
,”
J. Comput. Inf. Sci. Eng.
1530-9827,
1
, pp.
205
217
.
37.
Shepard
,
D.
, 1968, “
A Two-Dimensional Interpolation Function for Irregularly Spaced Data
,”
Proceeding of the 23 National Conference
, pp.
517
524
.
38.
Rvachev
,
V. L.
,
Sheiko
,
T. I.
,
Shapiro
,
V.
, and
Tsukanov
,
I.
, 2001, “
Transfinite Interpolation Over Implicitly Defined Sets
,”
Comput. Aided Geom. Des.
0167-8396,
18
, pp.
195
220
.
39.
Kartasheva
,
E.
,
Adzhiev
,
V.
,
Pasko
,
A.
,
Fryazinov
,
O.
, and
Gasilov
,
V.
, 2003, “
Surface and Volume Discretization of Functionally Based Heterogeneous Objects
,”
J. Comput. Inf. Sci. Eng.
1530-9827,
3
(
4
), pp.
285
294
.
You do not currently have access to this content.