In this research, a new hybrid neural network is developed to model engagement behaviors of automotive transmission wet friction component. Utilizing known first principles on the physics of engagement, special modules are created to estimate viscous torque and asperity contact torque as preprocessors to a two-layer neural network. Inside these modules, all the physical parameters are represented by neurons with various activation functions derived from first principles. These new features contribute to the improved performance and trainability over a conventional two-layer network model. Both the hybrid and conventional neural net models are trained and tested with experimental data collected from an SAE#2 test stand. The results show that the performance of the hybrid model is much superior to that of the conventional model. It successfully captures detailed characteristics of the friction component engagement torque as a function of time over a wide operating range.

1.
Wu
,
H.
,
1978
, “
A Review of Porous Squeeze Films
,”
Wear
,
47
,
371
385
.
2.
Ting
,
L. L.
,
1975
, “
Engagement Behavior of Lubricated Porous Annular Disks
,”
Wear
,
34
,
159
182
.
3.
Natsumeda
,
S.
, and
Miyoshi
,
T.
,
1994
, “
Numerical Simulation of Engagement of Paper Based Wet Clutch Facing
,”
J. Tribol.
,
116
, pp.
232
237
.
4.
Jacobson, B., 1992, “Engagement of Oil Immersed Multi-Disc Clutches,” International Power Transmission and Gearing Conference, 2, pp. 567–574.
5.
Berger
,
E. J.
,
Sadeghi
,
F.
, and
Krousgrill
,
C. M.
,
1997
, “
Analytical and numerical modeling of engagement of rough, permeable, grooved wet clutches
,”
ASME J. Tribol.
,
119
,
143
148
.
6.
Yang, Y., Lam, R. C., Chen, Y. F., and Yabe, H., 1995, “Modeling of Heat Transfer and Fluid Hydrodynamics for a Multi-disc Wet Clutch,” SAE Special Publication-Paper 950898.
7.
Fujii
,
Y.
,
Tobler
,
W. E.
, and
Snyder
,
T. D.
,
2001a
, “
Prediction of Wet Band Brake Dynamic Engagement Behavior Part I: Mathematical Model Development
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
,
215
(
D4
), pp.
479
492
.
8.
Fujii
,
Y.
,
Tobler
,
W. E.
, and
Snyder
,
T. D.
,
2001b
, “
Prediction of Wet Band Brake Dynamic Engagement Behavior Part 2: Experimental Model Validation
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
,
215
(
D5
), pp.
603
611
.
9.
Fujii
,
Y.
,
Tobler
,
W. E.
,
Clausing
,
E. M.
,
Megli
,
T. W.
, and
Haghgooie
,
M.
,
2002
, “
Application of Dynamic Band Brake Model for Enhanced Drivetrain Simulation
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
,
216
(
D11
), pp.
873
881
.
10.
Fanella, R., 1994a, “Design of Bands,” Design Practices-Passenger Car Automatic Transmissions 3rd ed., 1994, (Soc. Automotive Eng., New York).
11.
Fanella, R., 1994b, “Design of Friction Clutches,” Design Practices-Passenger Car Automatic Transmissions 3rd ed., 1994 (Soc. Automotive Eng., New York).
12.
Cybenko
,
G.
,
1989
, “
Approximation by Superpositions of a Sigmoidal Function
,”
Math. Control, Signals, Syst.
,
2
, pp.
303
314
.
13.
Funahashi
,
K.
,
1989
, “
On the Approximate Realization of Continuous Mapping by Neural Networks
,”
Neural Networks
,
2
(
3
), pp.
183
192
.
14.
Hornik
,
K.
,
Stinchcombe
,
M.
, and
White
,
H.
,
1989
, “
Multilayer Feedforward Networks are Universal Approximators
,”
Neural Networks
,
2
, pp.
359
366
.
15.
Narendra
,
K. S.
, and
Parthasarathy
,
K.
,
1990
, “
Identification and Control of Dynamical Systems Using Neural Networks
,”
IEEE Trans. Neural Netw.
,
1
(
1
), pp.
4
27
.
16.
Parlos
,
A. G.
,
Atiya
,
A. F.
,
Chong
,
K. T.
, and
Tsai
,
W. K.
,
1992
, “
Nonlinear Identification of Process Dynamics Using Neural Networks
,”
Nucl. Technol.
,
97
, pp.
79
96
.
17.
Funahashi
,
K.
, and
Nakamura
,
Y.
,
1993
, “
Approximation of Dynamical Systems by Continuous Time Recurrent Neural Networks
,”
Neural Networks
,
6
, pp.
801
806
.
18.
Sio K. C., and Lee, C. K., 1996, “Identification of a Nonlinear Motor System with Neural Networks,” International Workshop on Advanced Motion Control, Part 1, Mar 18–21, 1, pp. 287–292.
19.
El-Gindy
,
M.
, and
Palkovics
,
L.
,
1993
, “
Possible Application of Artificial Neural Networks to Vehicle Dynamics and Control: a Literature Review
,”
Int. J. Veh. Des.
,
14
, pp.
592
614
.
20.
Lai J. S., 1995, “Intelligent Robust Control of Clutch-to-Clutch Shifts in Vehicle Transmission Systems,” Ph.D. Thesis In Mechanical Engineering, Penn State University.
21.
Parvataneni, V. A., First Principle-based Hybrid Neural Network Clutch Dynamics Model. M.S. Thesis in Mechanical Engineering, the Pennsylvania State University, August, 1998.
22.
Parvateneni, V., Cao, M., Wang, K. W., Fujii, Y., and Tobler, W. E., 1999, “Hybrid Neural Network for Modeling Automotive Clutches,” Proc. ASME Dynamic Systems and Control Division, November, DSC-67, 255–263.
23.
Crouch
,
R. F.
, and
Cameron
,
A.
,
1961
, “
Viscosity-Temperature Equations for Lubricants
,”
J. Inst. Pet.
,
47
, pp.
307
313
.
24.
Dowson, D., and Higginson, G. R., 1977, Elasto-Hydrodynamic Lubrication, Pergamon Press.
25.
Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T., 1986, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge, England.
26.
Bose, N. K. and Liang, P., 1996, Neural Network Fundamentals with Graphs, Algorithms, and Applications, McGraw-Hill, Inc.
27.
Bassani, R. and Piccigallo, B., 1992, Hydrostatic Lubrication, Elsevier Science Publishers B. V.
You do not currently have access to this content.