A Lyapunov-based control strategy is proposed for the regulation of a Cartesian robot manipulator, which is modeled as a flexible cantilever beam with a translational base support. The beam (arm) cross-sectional area is assumed to be uniform and Euler-Bernoulli beam theory assumptions are considered. Moreover, two types of damping mechanisms; namely viscous and structural dampings, are considered for the arm material properties. The arm base motion is controlled utilizing a linear actuator, while a piezoelectric (PZT) patch actuator is bonded on the surface of the flexible beam for suppressing residual beam vibrations. The equations of motion for the system are obtained using Hamilton’s principle, which are based on the original infinite dimensional distributed system. Utilizing the Lyapunov method, the control force acting on the linear actuator and control voltage for the PZT actuator are designed such that the base is regulated to a desired set-point and the exponential stability of the system is attained. Depending on the composition of the controller, some favorable features appear such as elimination of control spillovers, controller convergence at finite time, suppression of residual oscillations and simplicity of the control implementation. The feasibility of the controller is validated through both numerical simulations and experimental testing.

1.
Skaar
,
S. B.
, and
Tucker
,
D.
,
1986
, “
Point Control of a One-Link Flexible Manipulator
,”
J. Appl. Mech.
,
53
, pp.
23
27
.
2.
Yuh
,
J.
,
1987
, “
Application of Discrete-Time Model Reference Adaptive Control to a Flexible Single-Link Robot
,”
J. Rob. Syst.
,
4
, pp.
621
630
.
3.
Ge
,
S. S.
,
Lee
,
T. H.
, and
Zhu
,
G.
,
1997
, “
A Nonlinear Feedback Controller for a Single-Link Flexible Manipulator Based on a Finite Element Method
,”
J. Rob. Syst.
,
14
(
3
), pp.
165
178
.
4.
de Querioz
,
M. S.
,
Dawson
,
D. M.
,
Agrawal
,
M.
, and
Zhang
,
F.
,
1999
, “
Adaptive Nonlinear Boundary Control of a Flexible Link Robot Arm
,”
IEEE Trans. Rob. Autom.
,
15
(
4
), pp.
779
787
.
5.
de Querioz, M. S., Dawson, D. M., Nagarkatti, S. P., and Zhang, F., 2000, Lyapunov-based Control of Mechanical Systems, Birkhauser, Boston.
6.
Jalili
,
N.
,
2001
, “
An Infinite Dimensional Distributed Base Controller for Regulation of Flexible Robot Arms
,”
ASME J. Dyn. Syst., Meas., Control
,
123
(
4
),
712
719
.
7.
Jalili
,
N.
, and
Olgac
,
N.
,
1998
, “
Time-Optimal/Sliding Mode Control Implementation for Robust Tracking of Uncertain Flexible Structures
,”
Mechatronics
,
8
(
2
), pp.
121
142
.
8.
Luo
,
Z. H.
,
Kitamura
,
N.
, and
Guo
,
B. Z.
,
1995
, “
Shear Force Feedback Control of Flexible Robot Arms
,”
IEEE Trans. Rob. Autom.
,
11
(
5
), pp.
760
765
.
9.
Ge
,
S. S.
,
Lee
,
T. H.
, and
Zhu
,
G.
,
1998
, “
Asymptotically Stable End-Point Regulation of a Flexible SCARA/Cartesian Robot
,”
IEEE/ASME Trans. Mechatron.
,
3
(
2
), pp.
138
144
.
10.
Ge
,
S. S.
,
Lee
,
T. H.
, and
Zhu
,
G.
,
1996
, “
Energy-Based Robust Controller Design for Multi-Link Flexible Robots
,”
Mechatronics
,
6
(
7
), pp.
779
798
.
11.
Lee
,
T. H.
,
Ge
,
S. S.
, and
Wang
,
Z. P.
,
2001
, “
Adaptive Robust Controller Design for Multi-Link Flexible Robots
,”
Mechatronics
,
11
(
8
), pp.
951
967
.
12.
Oueini
,
S. S.
,
Nayfeh
,
A. H.
, and
Pratt
,
J. R.
,
1998
, “
A Nonlinear Vibration Absorber for Flexible Structures
,”
Nonlinear Dyn.
,
15
, pp.
259
282
.
13.
Ge
,
S. S.
,
Lee
,
T. H.
, and
Gong
,
J. Q.
,
1999
, “
A Robust Distributed Controller of a Single-Link SCARA/Cartesian Smart Materials Robot
,”
Mechatronics
,
9
, pp.
65
93
.
14.
Gaundenzi
,
P.
,
Carbonaro
,
R.
, and
Benzi
,
E.
,
2000
, “
Control of Beam Vibrations by Means of Piezoelectric Devices: Theory and Experiments
,”
Compos. Struct.
,
50
, pp.
373
379
.
15.
Sunar
,
M.
,
Hyder
,
S. J.
, and
Yilbas
,
B. S.
,
2001
, “
Robust Design of Piezoelectric Actuator for Structural Control
,”
Comput. Methods Appl. Mech. Eng.
,
190
, pp.
6257
6270
.
16.
Jalili, N., Dadfarnia, M., Hong, F., and Ge, S. S., 2002, “An Adaptive Non Model-Based Piezoelectric Control of Flexible Beams With Translational Base,” Proceedings of the American Control Conference (ACC’02), pp. 3802–3807, Anchorage, Alaska.
17.
Crawley
,
E. F.
, and
Anderson
,
E. H.
,
1990
, “
Detailed Models of Piezoelectric Actuation of Beam
,”
J. Intell. Mater. Syst. Struct.
,
1
, pp.
4
25
.
18.
Wang
,
B. T.
, and
Rogers
,
C. A.
,
1991
, “
Laminated Plate Theory for Spatially Distributed Induced Strain Actuators
,”
J. Compos. Mater.
,
25
, pp.
433
452
.
19.
Wang
,
Q.
, and
Quek
,
S. T.
,
2000
, “
Flexural Vibration Analysis of Sandwich Beam Coupled With Piezoelectric Actuator
,”
Smart Mater. Struct.
,
9
, pp.
103
109
.
20.
Ge
,
S. S.
,
Lee
,
T. H.
, and
Gong
,
J. Q.
,
1998
, “
Dynamic Modeling of a Smart Materials Robot
,”
AIAA J.
,
36
(
8
), pp.
1466
1478
.
21.
Dadfarnia
,
M.
,
Jalili
,
N.
and
Dawson
,
D. M.
,
2004
, “
An Observer-Based Piezoelectric Control of Flexible Cartesian Robot Manipulators: Theory and Experiment
,”
Journal of Vibration and Control
,
12
, pp.
1041
-
1053
.
22.
Dadfarnia, M., Jalili, N., and Dawson, D. M., 2003, “An Investigation of Damping Mechanisms in Translational Euler-Bernoulli Beams Using a Lyapunov-Based Stability Approach,” Proceedings of 2003 ASME International Mechanical Engineering Congress & Exposition (IMECE’03), Symposium on Active Vibration and Noise Control, Washington, DC.
23.
Chen, G., Krantz, S. G., Ma, D., W., Wayne, C., E., and West, H., H., 1987, “The Euler-Bernoulli Beam Equation With Boundary Energy Dissipation,” In: S. J. Lee, editor, Operator Methods for Optimal Control Problems, Marcel-Dekker, New York.
24.
Andre’ Preumont, 1997, Vibration Control of Active Structures: An Introduction, Kluwer Academic Publishers.
25.
Dosch
,
J. J.
,
Inman
,
D. J.
, and
Garcia
,
E.
,
1992
, “
A Self-Sensing Piezoelectric Actuator for Collocated Control
,”
J. Intell. Mater. Syst. Struct.
,
3
(
1
), pp.
166
185
.
26.
Halim
,
D.
, and
Moheimani
,
S. O. R.
,
2001
, “
Spatial Resonant Control of Flexible Structures: Application to a Piezoelectric Laminate Beam
,”
IEEE Trans. Control Syst. Technol.
,
9
(
1
), pp.
37
53
.
27.
Liu, Z., Jalili, N., Dadfarnia, M., and Dawson, D. M., 2002, “A Reduced-Order Observer Based Piezoelectric Control of Flexible Cartesian (SCARA) Robot Manipulator,” Proceedings of 2002 International Mechanical Engineering Congress & Exposition (IMECE’02), New Orleans, Louisiana.
You do not currently have access to this content.