A primary focus of the system dynamics literature is the development of structured modeling methods, suitable for application to a diverse array of engineering problems. An important obstacle in the development of unified modeling methods is the need to employ Eulerian reference frames in many thermofluid systems applications. An extension of Lagrange’s equations, to compressible thermofluid dynamics in Eulerian frames, offers a general modeling methodology for thermofluid systems compatible with discrete energy methods widely used for mechanical systems simulations.

1.
Anderson
,
J. D.
, Jr.
, 1995,
Computational Fluid Dynamics
,
McGraw-Hill
,
New York
.
2.
Laney
,
C. B.
, 1998,
Computational Gasdynamics
,
Cambridge University Press
,
New York
.
3.
Carey
,
G. F.
, and
Oden
,
J. T.
, 1986,
Finite Elements, Fluid Mechanics
:
Prentice-Hall
,
Englewood Cliffs, NJ
.
4.
McGlaun
,
J. M.
,
Thompson
,
S. L.
, and
Elrick
,
M. G.
, 1990, “
CTH: A. Three Dimensional Shock Wave Physics Code
,”
Int. J. Impact Eng.
0734-743X,
10
, pp.
351
360
.
5.
Wallin
,
B. K.
,
Tong
,
C.
,
Nichols
,
A. L.
, and
Chow
,
E. T.
, 2001, “
Large Multiphysics Simulations in ALE3D
,” presented at the
Tenth SIAM Conference on Parallel Processing for Scientific Computing
,
Portsmouth, VA
, Mar. 12–14.
6.
Greenwood
,
D. T.
, 1988,
Principles of Dynamics
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
7.
Meirovitch
,
L.
, 1986,
Elements of Vibration Analysis
,
McGraw-Hill
,
New York
.
8.
Shearer
,
J. L.
,
Kulakowski
,
B. T.
, and
Gardner
,
J. F.
, 1997,
Dynamic Modeling and Control of Engineering Systems
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
9.
Fahrenthold
,
E. P.
, and
Venkataraman
,
M.
, 1996, “
Eulerican Bond Graphs for Fluid Continuum Dynamics Modeling
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
118
, pp.
48
57
.
10.
O’Reilly
,
O. M.
, and
Srinivasa
,
A. R.
, 2001, “
On a Decomposition of Generalized Constraint Forces
,”
Proc. R. Soc. London, Ser. A
1364-5021,
457
, pp.
1307
1313
.
11.
Kalaba
,
R.
,
Natsuyama
,
H.
, and
Udwadia
,
F.
, 2004, “
An Extension of Gauss’s Principal of Least Constraint
,”
Int. J. Gen. Syst.
,
33
, pp.
63
69
.
12.
Fahrenthold
,
E. P.
, and
Koo
,
J. C.
, 1999, “
Discrete Hamilton’s Equations for Viscous Compressible Fluid Dynamics
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
178
, pp.
1
22
.
13.
Koo
,
J. C.
, and
Fahrenthold
,
E. P.
, 2000, “
Discrete Hamilton’s Equations for Arbitrary Lagrangian-Eulerian Dynamics of Viscous Compressible Flow
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
189
, pp.
875
900
.
14.
Ginsberg
,
J. H.
, 1988,
Advanced Engineering Dynamics
,
Harper and Row
,
New York
.
15.
Steinberg
,
D. J.
, 1996, Lawrence Livermore National Laboratory, Report No. UCRL-MA-106439.
16.
Neimark
,
J. I.
, and
Fufaev
,
N. A.
, 1972,
Dynamics of Nonholonomic Systems
,
American Mathematical Society
,
Providence, RI
.
17.
Yourgrau
,
W.
, and
Mandelstam
,
S.
, 1955,
Variational Principles in Dynamics and Quantum Theory
,
Pitman
,
New York
.
18.
Kane
,
T. R.
, and
Levinson
,
D. A.
, 1985,
Dynamics: Theory and Applications
,
McGraw-Hill
,
New York
.
19.
Baruh
,
H.
, 1999,
Analytical Dynamics
,
McGraw-Hill
,
New York
.
20.
Brown
,
F.
, 1981, “
Energy-Based Modeling and Quasi Coordinates
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
103
, pp.
5
13
.
21.
Karnopp
,
D. C.
,
Margolis
,
D. L.
, and
Rosenberg
,
R. C.
, 1990,
System Dynamics
,
Wiley
,
New York
.
22.
Brown
,
F. T.
, 2001,
Engineering System Dynamics
,
Dekker
,
New York
.
23.
Brown
,
F. T.
, 1991, “
Convection Bonds and Bond Graphs
,”
J. Franklin Inst.
0016-0032,
328
, pp.
871
886
.
24.
Breedveld
,
P. C.
,
Rosenberg
,
R. C.
, and
Zhou
,
T.
, 1991, “
Bibliography of Bond Graph Theory and Application
,”
J. Franklin Inst.
0016-0032,
328
, pp.
1067
1109
.
25.
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
, 1989,
The Finite Element Method
,
McGraw-Hill
,
New York
.
26.
Eckert
,
E. R. G.
, and
Drake
,
R. M.
, Jr.
, 1972,
Analysis of Heat and Mass Transfer
,
McGraw-Hill
,
New York
.
27.
Holman
,
J. P.
, 1969,
Thermodynamics
,
McGraw-Hill
,
New York
.
28.
Noh
,
W. F.
, 1978, “
Errors for Calculation of Strong Shocks Using an Artificial Viscosity and an Artificial Heat Flux
,”
J. Comput. Phys.
0021-9991,
72
, pp.
78
120
.
29.
Lu
,
Y. Y.
,
Belytschko
,
T.
, and
Tabbara
,
M.
, 1995, “
Element-Free Galerkin Method for Wave Propagation and Dynamic Fracture
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
126
, pp.
131
153
.
30.
Emanuel
,
G.
, 1986,
Gasdynamics, Theory and Applications
,
AIAA Education Series
,
New York
.
31.
Kolsky
,
H.
, 1963,
Stress Waves In Solids
,
Dover
,
New York
.
32.
Ghidaoui
,
M. S.
,
Ming Zhao
,
M.
, and
McInnis
,
D. A.
, 2005, “
A. Review of Water Hammer Theory and Practice
,”
Appl. Mech. Rev.
0003-6900,
58
, pp.
49
76
.
33.
Pirozzoli
,
S.
, 2007, “
Performance Analysis and Optimization of Finite-Difference Schemes for Wave Propagation Problems
,”
J. Comput. Phys.
0021-9991,
222
, pp.
809
831
.
34.
Lukacova-Medvidova
,
M.
,
Saibertova
,
J.
, and
Warnecke
,
G.
, 2002, “
Finite Volume Evolution Galerkin Methods for Nonlinear Hyperbolic Systems
,”
J. Comput. Phys.
0021-9991,
183
, pp.
533
562
.
35.
Hu
,
F.
,
Hussaini
,
M. Y.
, and
Rasetarineray
,
P.
, 1999, “
An Analysis of the Discontinuous Galerkin Method for Wave Propagation Problems
,”
J. Comput. Phys.
0021-9991,
151
, pp.
921
946
.
36.
Sigalotti
,
L.
,
Lopez
,
H.
,
Donoso
,
A.
,
Sira
,
E.
, and
Klapp
,
J.
, 2002, “
A Shock-Capturing SPH Scheme Based on Adaptive Kernel Estimation
,”
J. Comput. Phys.
0021-9991,
212
, pp.
124
149
.
You do not currently have access to this content.