Vapor compression cycle systems using accumulators and receivers inherently operate at or near a transition point involving changes of phase at the heat exchanger outlets. This work introduces a condenser/receiver model and an evaporator/accumulator model developed in the moving-boundary framework. These models use a novel extension of physical variable definitions to account for variations in refrigerant exit phase. System-level model validation results, which demonstrate the validity of the new models, are presented. The model accuracy is improved by recognizing the sensitivity of the models to refrigerant mass flow rate. The approach developed and the validated models provide a valuable tool for dynamic analysis and control design for vapor compression cycle systems.

1.
Bendapudi
,
S.
, and
Braun
,
J. E.
, 2002, “
A Review of Literature on Dynamic Models of Vapor Compression Equipment
,” ASHRAE Report No. 4036-5.
2.
MacArthur
,
J. W.
, and
Grald
,
E. W.
, 1989, “
Unsteady Compressible Two-Phase Flow Model for Predicting Cyclic Heat Pump Performance and a Comparison With Experimental Data
,”
Int. J. Refrig.
0140-7007,
12
(
1
), pp.
29
41
.
3.
Anderson
,
B. D. O.
, 1993, “
Controller Design: Moving From Theory to Practice
,”
IEEE Control Syst. Mag.
0272-1708,
13
(
4
), pp.
16
25
.
4.
Grald
,
E. W.
, and
MacArthur
,
J. W.
, 1992, “
A Moving-Boundary Formulation for Modeling Time-Dependent Two-Phase Flows
,”
Int. J. Heat Fluid Flow
0142-727X,
13
(
3
), pp.
266
272
.
5.
Dhar
,
M.
, and
Soedel
,
W.
, 1979, “
Transient Analysis of a Vapor Compression Refrigeration System
,”
Proceedings of the 15th International Congress of Refrigeration
,
Venice
, Sept. 23–29, Vol.
2
, pp.
1031
1067
.
6.
Rasmussen
,
B. P.
, and
Alleyne
,
A. G.
, 2004, “
Control-Oriented Modeling of Transcritical Vapor Compression Systems
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
126
, pp.
54
64
.
7.
He
,
X. D.
,
Asada
,
H.
,
Liu
,
S.
, and
Itoh
,
H.
, 1998, “
Multivariable Control of Vapor Compression Systems
,”
HVAC&R Res.
1078-9669,
4
(
3
), pp.
205
230
.
8.
Willatzen
,
M.
,
Pettit
,
N. B. O. L.
, and
Ploug-Sorensen
,
L.
, 1998, “
General Dynamic Simulation Model for Evaporators and Condensers in Refrigeration. Part I: Moving-Boundary Formulation of Two-Phase Flows With Heat Exchange
,”
Int. J. Refrig.
0140-7007,
21
(
5
), pp.
398
403
.
9.
Jensen
,
J. M.
, and
Tummescheit
,
H.
, 2002, “
Moving-Boundary Models for Dynamic Simulations of Two-Phase Flows
,”
Proceedings of the Second International Modelica Conference
,
Oberpfaffenhofen, Germany
, March 18–19, pp.
235
244
.
10.
Wedekind
,
G. L.
,
Bhatt
,
B. L.
, and
Beck
,
B. T.
, 1978, “
A System Mean Void Fraction Model for Predicting Various Transient Phenomena Associated With Two-Phase Evaporating and Condensing Flows
,”
Int. J. Multiphase Flow
0301-9322,
4
(
1
), pp.
97
114
.
11.
Rasmussen
,
B. P.
, 2005, “
Dynamic Modeling and Advanced Control of Air Conditioning and Refrigerating Systems
,” Ph.D. thesis, University of Illinois at Urbana-Champaign, Urbana.
12.
Rice
,
C. K.
, 1987, “
Effect of Void Fraction Correlation and Heat Flux Assumption on Refrigerant Charge Inventory Predictions
,”
ASHRAE Trans.
0001-2505,
93
(
1
), pp.
341
376
.
13.
Rasmussen
,
B. P.
, 2000, “
Control-Oriented Modeling of Transcritical Vapor Compression Systems
,” MS thesis, University of Illinois at Urbana-Champaign, Urbana.
14.
Kays
,
W. M.
, and
London
,
A. L.
, 1984,
Compact Heat Exchangers
,
McGraw-Hill, Inc.
,
New York
.
15.
Eldredge
,
B.
,
Rasmussen
,
B.
, and
Alleyne
,
A.
, 2006, “
Automotive Vapor Compression Cycles: Validation of Control-Oriented Models
,”
Proceedings of 2006 SAE World Congress
,
Detroit
, April 3–6, SAE Technical Paper No. 2006-01-1452.
16.
Chi
,
J.
, and
Didion
,
D. A.
, 1982, “
A Simulation Model of the Transient Performance of a Heat Pump
,”
Int. J. Refrig.
0140-7007,
5
(
3
), pp.
176
184
.
17.
Moore
,
K. L.
, 1993,
Iterative Learning Control for Deterministic Systems
,
Springer-Verlag
,
London
, pp.
9
22
.
18.
Bristow
,
D. A.
,
Tharayil
,
M.
, and
Alleyne
,
A.
, 2006, “
A Survey of Iterative Learning Control: A Learning-Based Method for High-Performance Tracking Control
,”
IEEE Control Syst.
1066-033X,
26
(
3
), pp.
96
114
.
19.
Ljung
,
L.
, 1999,
System Identification
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
You do not currently have access to this content.