This paper presents the design and implementation of a positioning system with a dc servomotor and ball-screw mechanism used to realize high-precision positioning over a wide travel range with nanometer level positioning error and near zero overshoot. Instead of the popular dual-model control strategy and friction compensation, a high-gain proportional-integral-derivative controller is used to realize a single-step point-to-point positioning. The controller parameters are obtained by placing closed-loop poles according to the macrodynamics of a ball-screw mechanism only to avoid identification of microdynamics and friction modeling. In order to suppress the overshoot caused by actuator saturation in long-stroke positioning, a trajectory planning method is applied to calculate the input of the closed-loop system. Experimental and simulation results demonstrate that single-step precision positioning responses to different size commands are achieved without producing any large overshoot. In point-to-point positioning from 100 mm down to 10 nm, the positioning error is within 2 nm and the response dynamics is satisfactory.

1.
Pozzi
,
M.
, 2001, “
Piezoelectric Actuators in Micropositioning
,”
Eng. Sci. Educ. J.
0963-7346,
10
, pp.
31
36
.
2.
Mizumoto
,
H.
,
Yabuya
,
M.
,
Shimizu
,
T.
, and
Kami
,
Y.
, 1995, “
An Angstrom Positioning System Using a Twist-Roller Friction Drive
,”
Precis. Eng.
0141-6359,
17
, pp.
57
62
.
3.
Galen
,
P.
,
Qin
,
X.
,
Thomas
,
G.
, and
James
,
S.
, 2005, “
High-Power Inchworm [Registered Trademark] Actuators for Extended-Range Precision Positioning
,”
Smart Structures and Materials 2005—Industrial and Commercial Applications of Smart Structures Technologies
, San Diego, CA, pp.
287
298
.
4.
Mao
,
J. H.
,
Tachikawa
,
H.
, and
Shimokohbe
,
A.
, 2003, “
Precision Positioning of a DC-Motor-Driven Aerostatic Slide System
,”
Precis. Eng.
0141-6359,
27
, pp.
32
41
.
5.
Mao
,
J. H.
,
Tachikawa
,
H.
, and
Shimokohbe
,
A.
, 2003, “
Double Integrator Control for Precision Positioning in the Presence of Friction
,”
Precis. Eng.
0141-6359,
27
, pp.
419
428
.
6.
Canudas de Wit
,
C.
,
Olsson
,
H.
,
Åström
,
K. J.
, and
Lischinsky
,
P.
, 1995, “
A New Model for Control of Systems With Friction
,”
IEEE Trans. Autom. Control
0018-9286,
40
, pp.
419
425
.
7.
Hsieh
,
C.
, and
Pan
,
Y. -C.
, 2000, “
Dynamic Behaviour and Modelling of the Pre-Sliding Static Friction
,”
Wear
0043-1648,
242
, pp.
1
17
.
8.
Wu
,
R. H.
, and
Tung
,
P. C.
, 2002, “
Study of Stick-Slip Friction, Presliding Displacement, and Hunting
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
124
, pp.
111
117
.
9.
Hatazawa
,
T.
,
Kawaguchi
,
T.
, and
Kagami
,
J.
, 2004, “
Application of Micro-Displacement Characteristics to Nanoscale Positioning
,”
Wear
0043-1648,
257
, pp.
1226
1229
.
10.
Huang
,
S. -J.
,
Yen
,
J. -Y.
, and
Lu
,
S. -S.
, 1999, “
Dual Model Control of a System With Friction
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
7
, pp.
306
314
.
11.
Chen
,
C. L.
,
Jang
,
M. J.
, and
Lin
,
K. C.
, 2004, “
Modeling and High-Precision Control of a Ball-Screw-Driven Stage
,”
Precis. Eng.
0141-6359,
28
, pp.
483
495
.
12.
Chen
,
J. S.
,
Chen
,
K. C.
,
Lai
,
Z. C.
, and
Huang
,
Y.-K.
, 2003, “
Friction Characterization and Compensation of a Linear-Motor Rolling-Guide Stage
,”
Int. J. Mach. Tools Manuf.
0890-6955,
43
, pp.
905
915
.
13.
Ro
,
P. I.
, and
Hubbe
,
P. I.
, 1993, “
Model Reference Adaptive Control of Dual-Mode Micro/Macro Dynamics of Ball Screws for Nanometer Motion
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
115
, pp.
103
108
.
14.
Huang
,
S. J.
, and
Wang
,
S. S.
, 2009, “
Mechatronics and Control of a Long-Range Nanometer Servomechanism
,”
Mechatronics
0957-4158,
19
, pp.
14
28
.
15.
Åström
,
K. J.
, and
Hägglund
,
T.
, 2001, “
The Future of PID Control
,”
Control Eng. Pract.
0967-0661,
9
, pp.
1163
1175
.
16.
Lequin
,
O.
,
Givers
,
M.
, and
Mossberg
,
M.
, 2003, “
Iterative Feedback Tuning of PID Parameters: Comparison With Classical Tuning Rules
,”
Control Eng. Pract.
0967-0661,
11
, pp.
1023
1033
.
17.
Erkorkmaz
,
K.
, and
Kamalzadeh
,
A.
, 2006, “
High Bandwidth Control of Ball Screw Drives
,”
CIRP Annals–Manufacturing Technology
,
55
, pp.
393
398
.
18.
Wahyudi
,
Sato
,
K.
, and
Shimokohbe
,
A.
, 2003, “
Characteristics of Practical Control for Point-to-Point (PTP) Positioning Systems—Effect of Design Parameters and Actuator Saturation on Positioning Performance
,”
Precis. Eng.
0141-6359,
27
, pp.
157
169
.
19.
Bohn
,
C.
, and
Atherton
,
D. P.
, 1995, “
Analysis Package Comparing PID Anti-Windup Strategies
,”
IEEE Control Syst. Mag.
0272-1708,
15
, pp.
34
40
.
20.
Guo
,
X. G.
,
Wang
,
D. C.
,
Li
,
C. X.
, and
Liu
,
Y. D.
, 2002, “
A Rapid and Accurate Positioning Method With Linear Deceleration in Servo System
,”
Int. J. Mach. Tools Manuf.
0890-6955,
42
, pp.
851
861
.
You do not currently have access to this content.