The paper is devoted to the robust stability problem of linear time invariant feedback control systems with actuator saturation, especially in those cases with potentially large parametric uncertainty. The main motivation of the work has been twofold: First, most of the existing robust antiwindup techniques use a conservative plant uncertainty description, and second, previous quantitative feedback theory (QFT) results for control systems with actuator saturation are not suitable to achieve robust stability specifications when the control system is saturated. Traditionally, in the literature, this type of problems has been solved in terms of linear matrix inequalities (LMIs), using less structured uncertainty descriptions as given by the QFT templates. The problem is formulated for single input single output systems in an input-output (I/O) stability sense, and is approached by using a generic three degrees of freedom control structure. In this work, a QFT-based design method is proposed in order to solve the robust stability problem of antiwindup design methods. The main limitation is that the plant has poles in the closed left half plane, and at most, has one integrator. The work investigates robust adaptations of the Zames–Falb stability multipliers result, and it may be generalized to any compensation scheme that admits a decomposition as a feedback interconnection of linear and nonlinear blocks (Lur’e type system), being antiwindup systems as a particular case. In addition, an example will be shown, making explicit the advantages of the proposed method in relation to previous approaches.

1.
Doyle
,
J. C.
,
Smith
,
R. S.
, and
Enns
,
D. F.
, 1987, “
Control of Plants With Input Saturation Nonlinearities
,”
Proceedings of the 1987 American Control Conference
, Minneapolis, MN, pp.
1034
1039
.
2.
Bernstein
,
D.
, and
Michel
,
A. N.
, 1995, “
Chronological Bibliography on Saturating Actuators
,”
Int. J. Robust Nonlinear Control
1049-8923,
5
, pp.
375
380
.
3.
Stoorvogel
,
A. A.
, and
Saberi
,
A.
, 1999, “
Special Issue: Control Problems With Constraints
,”
Int. J. Robust Nonlinear Control
1049-8923,
9
, pp.
583
734
.
4.
Fertik
,
H. A.
, and
Ross
,
C. W.
, 1967, “
Direct Digital Control Algorithm With Anti-Windup Feature
,”
ISA Trans.
0019-0578,
6
, pp.
317
328
.
5.
Hanus
,
R.
,
Kinnaert
,
M.
, and
Henrotte
,
J. L.
, 1987, “
Conditioning Technique, A General Anti-Windup and Bumpless Transfer Method
,”
Automatica
0005-1098,
23
, pp.
729
739
.
6.
Hanus
,
R.
, and
Kinnaert
,
M.
, 1989, “
Control of Constrained Multivariable Systems Using the Conditioning Technique
,”
Proceedings of the 1989 American Control Conference
, pp.
1711
1718
.
7.
Kothare
,
M. V.
,
Campo
,
P. J.
,
Morari
,
M.
, and
Nett
,
C. N.
, 1994, “
A Unified Framework for the Study of Anti-Windup Designs
,”
Automatica
0005-1098,
30
, pp.
1869
1883
.
8.
Edwards
,
C.
, and
Postlethwaite
,
I.
, 1998, “
Anti-Windup and Bumpless Transfer Schemes
,”
Automatica
0005-1098,
34
, pp.
199
210
.
9.
Weston
,
P. F.
, and
Postlethwaite
,
I.
, 2000, “
Linear Conditioning for Systems Containing Saturating Actuators
,”
Automatica
0005-1098,
36
, pp.
1347
1354
.
10.
Teel
,
A. R.
, and
Kapoor
,
N.
, 1997, “
The L2 Anti-Windup Problem: Its Definition and Solution
,”
Proceedings of the Fourth European Control Conference
, Brussels, Belgium.
11.
Horowitz
,
I.
, 1980, “
A Synthesis Theory for a Class of Saturating Systems
,”
Int. J. Control
0020-7179,
38
, pp.
169
187
.
12.
Herman
,
P.
, and
Franchek
,
M. A.
, 2000, “
Engine Idle Speed Control Using Actuator Saturation
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
8
(
1
), pp.
192
199
.
13.
Wu
,
W.
, and
Jayasuriya
,
S.
, 1999, “
Controller Design for a Nonovershooting Step Response With Saturating Nonlinearities
,”
Proceedings of the 1999 American Control Conference
, San Diego, CA, pp.
3046
3050
.
14.
Wu
,
W.
, and
Jayasuriya
,
S.
, 2001, “
A New QFT Design Methodology for Feedback Systems Under Input Saturation
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
123
, pp.
225
232
.
15.
Moreno
,
J. C.
,
Banos
,
A.
, and
Berenguel
,
M.
, 2003, “
A Synthesis Theory for Uncertain Linear Systems With Saturation
,”
Proceedings of the Fourth IFAC Symposium on Robust Control Design
, Milan, Italy.
16.
Chan
,
C. W.
, and
Hui
,
K.
, 1998, “
On the Existence of Globally Stable Actuator Saturation Compensators
,”
Int. J. Control
0020-7179,
69
, pp.
773
788
.
17.
Kothare
,
M. V.
, and
Morari
,
M.
, 1999, “
Multiplier Theory for Stability Analysis of Anti-Windup Control Systems
,”
Automatica
0005-1098,
35
, pp.
917
928
.
18.
Oldak
,
S.
,
Baril
,
C.
, and
Gutman
,
P. -O.
, 1994, “
Quantitative Design of a Class of Non-Linear Systems With Parameter Uncertainty
,”
Int. J. Robust Nonlinear Control
1049-8923,
4
, pp.
101
117
.
19.
Campo
,
P. J.
, and
Morari
,
M.
, 1990, “
Robust Control of Processes Subject to Saturation Nonlinearities
,”
Comput. Chem. Eng.
0098-1354,
14
, pp.
343
358
.
20.
Hippe
,
P.
, and
Wurmthaler
,
C. H. R.
, 1997, “
Controller and Plant Windup Prevention in MIMO Loops With Input Saturation
,”
Proceedings of the Fourth European Control Conference
, Brussels, Belgium.
21.
Tyan
,
F.
, and
Bernstein
,
D. S.
, 1995, “
Anti-Windup Compensator Synthesis for Systems With Saturation Actuators
,”
Int. J. Robust Nonlinear Control
1049-8923,
5
, pp.
521
537
.
22.
Camacho
,
E. F.
, 1993, “
Constrained Model Predictive Control
,”
IEEE Trans. Autom. Control
0018-9286,
38
, pp.
327
332
.
23.
Alamo
,
T.
,
Limon
,
D.
,
Cepeda
,
A.
,
Fiacchini
,
M.
, and
Camacho
,
E. F.
, 2006, “
Synthesis of Robust Saturated Controllers: An SNS-Approach
,”
Proceedings of the Fifth IFAC Symposium on Robust Control Design
, Toulouse, France.
24.
Horowitz
,
I.
, and
Liao
,
Y. K.
, 1986, “
Quantitative Nonlinear Compensation Design for Saturating Unstable Uncertain Plants
,”
Int. J. Control
0020-7179,
44
, pp.
1137
1146
.
25.
Miller
,
R. B.
, and
Pachter
,
M.
, 1996, “
Manual Tracking Control With Amplitude and Rate Constrained Actuators
,”
Proceedings of the 1996 IEEE Conference in Decision and Control
, New Orleans, LA, pp.
3159
3164
.
26.
Reinelt
,
W.
, and
Canale
,
M.
, 2001, “
Robust Control of SISO Systems Subject to Hard Input Constraints
,”
Proceedings of the 2001 European Control Conference
, Oporto, Portugal, pp.
1536
1541
.
27.
Reinelt
,
W.
, 2001, “
Design of Optimal Control Systems With Bounded Control Signals
,”
Proceedings of the 2001 European Control Conference
, Oporto, Portugal, pp.
348
353
.
28.
Sastry
,
S.
,
Meyer
,
G.
,
Tomlin
,
C.
,
Lygeros
,
J.
,
Godbole
,
D.
, and
Pappas
,
G.
, 1995, “
Hybrid Control in Air Traffic Management Systems
,”
Proceedings of the 1995 IEEE Conference in Decision and Control
, New Orleans, LA, pp.
1478
1483
.
29.
Pappas
,
G. J.
, 1996, “
Avoiding Saturation by Trajectory Reparameterization
,”
Proceedings of the 1996 IEEE Conference in Decision and Control
, Kobe, Japan, pp.
76
81
.
30.
Saberi
,
A.
,
Stoorvogel
,
A.
, and
Sannuti
,
P.
, 2000,
Control of Linear Systems With Regulation and Input Constraints
,
Springer-Verlag
,
Berlin
.
31.
Grimm
,
G.
,
Teel
,
A. R.
, and
Zaccarian
,
L.
, 2004, “
Robust Linear Anti-Windup Synthesis for Recovery of Unconstrained Performance
,”
Int. J. Robust Nonlinear Control
1049-8923,
14
, pp.
1133
1168
.
32.
Marcos
,
A.
,
Turner
,
M. C.
,
Bates
,
D. G.
, and
Postlethwaite
,
I.
, 2006, “
Robustification of Static and Low Order Anti-Windup Designs
,”
Proceedings of the Fifth IFAC Symposium on Robust Control Design
, Toulouse, France.
33.
Turner
,
M. C.
,
Herrmann
,
G.
, and
Postlethwaite
,
I.
, 2007, “
Incorporating Robustness Requirements Into Antiwindup Design
,”
IEEE Trans. Autom. Control
0018-9286,
52
(
10
), pp.
1842
1855
.
34.
Hong
,
Y.
, and
Yao
,
B.
, 2007, “
A Globally Stable Saturated Desired Compensation Adaptive Robust Control for Linear Motor Systems With Comparative Experiments
,”
Automatica
0005-1098,
43
, pp.
1840
1848
.
35.
Vidyasagar
,
M.
, 1993,
Nonlinear Systems Analysis
, 2nd ed.,
Prentice-Hall
,
Englewood Cliffs, NJ
.
36.
Chen
,
X.
, and
Wen
,
J. T.
, 1995, “
Robustness Analysis of LTI Systems With Structured Incrementally Sector Bounded Nonlinearities
,”
Proceedings of the 1995 American Control Conference
, Seattle, Washington, pp.
3883
3887
.
37.
Banos
,
A.
, and
Barreiro
,
A.
, 2000, “
Stability of Nonlinear QFT Designs Based on Robust Stability Criteria
,”
Int. J. Control
0020-7179,
73
, pp.
74
88
.
38.
Barreiro
,
A.
, and
Baños
,
A.
, 2000, “
Nonlinear Robust Stabilization by Conicity and QFT Techniques
,”
Automatica
0005-1098,
36
, pp.
1309
1320
.
39.
Banos
,
A.
,
Barreiro
,
A.
,
Gordillo
,
F.
, and
Aracil
,
J.
, 2002, “
A QFT Framework for Nonlinear Robust Stability
,”
Int. J. Robust Nonlinear Control
1049-8923,
12
(
4
), pp.
357
372
.
40.
Banos
,
A.
, 2007, “
Nonlinear Quantitative Feedback Theory
,”
Int. J. Robust Nonlinear Control
1049-8923,
17
(
2–3
), pp.
181
202
.
41.
Sussmann
,
H. J.
,
Sontag
,
E. D.
, and
Yang
,
Y.
, 1994, “
A General Result on the Stabilization of Linear Systems Using Bounded Controls
,”
IEEE Trans. Autom. Control
0018-9286,
39
(
12
), pp.
2411
2425
.
42.
Zames
,
G.
, and
Falb
,
P. L.
, 1968, “
Stability Conditions for Systems With Monotone and Slope-Restricted Nonlinearities
,”
SIAM Journal
,
6
(
1
), pp.
89
108
.
43.
Slotine
,
J. -J. E.
, and
Li
,
W.
, 1991,
Applied Nonlinear Control
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
44.
Jonsson
,
U.
, and
Megretski
,
A.
, 2000, “
The Zames-Falb IQC for Systems With Integrators
,”
IEEE Trans. Autom. Control
0018-9286,
45
, pp.
560
565
.
You do not currently have access to this content.