Mechanical systems operate under parametric and external excitation uncertainties. The polynomial chaos approach has been shown to be more efficient than Monte Carlo for quantifying the effects of such uncertainties on the system response. Many uncertain parameters cannot be measured accurately, especially in real time applications. Information about them is obtained via parameter estimation techniques. Parameter estimation for large systems is a difficult problem, and the solution approaches are computationally expensive. This paper proposes a new computational approach for parameter estimation based on the extended Kalman filter (EKF) and the polynomial chaos theory for parameter estimation. The error covariances needed by EKF are computed from polynomial chaos expansions, and the EKF is used to update the polynomial chaos representation of the uncertain states and the uncertain parameters. The proposed method is applied to a nonlinear four degree of freedom roll plane model of a vehicle, in which an uncertain mass with an uncertain position is added on the roll bar. The main advantages of this method are an accurate representation of uncertainties via polynomial chaos, a computationally efficient update formula based on EKF, and the ability to provide a posteriori probability densities of the estimated parameters. The method is able to deal with non-Gaussian parametric uncertainties. The paper identifies and theoretically explains a possible weakness of the EKF with approximate covariances: numerical errors due to the truncation in the polynomial chaos expansions can accumulate quickly when measurements are taken at a fast sampling rate. To prevent filter divergence, we propose to lower the sampling rate and to take a smoother approach where time-distributed observations are all processed at once. We propose a parameter estimation approach that uses polynomial chaos to propagate uncertainties and estimate error covariances in the EKF framework. Parameter estimates are obtained in the form of polynomial chaos expansion, which carries information about the a posteriori probability density function. The method is illustrated on a roll plane vehicle model.

1.
Sandu
,
A.
,
Sandu
,
C.
, and
Ahmadian
,
M.
, 2006, “
Modeling Multibody Dynamic Systems With Uncertainties. Part I: Theoretical and Computational Aspects
,”
Multibody System Dynamics
,
Springer
,
The Netherlands
, pp.
1
23
.
2.
Sandu
,
C.
,
Sandu
,
A.
, and
Ahmadian
,
M.
, 2006, “
Modeling Multibody Dynamic Systems With Uncertainties. Part II: Numerical Applications
,”
Multibody System Dynamics
,
Springer
,
The Netherlands
, Vol.
15
, pp.
241
262
.
3.
Tarantola
,
A.
, 2004,
Inverse Problem Theory and Methods for Model Parameter Estimation
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
4.
Bishwal
,
J. P. N.
, 2008,
Parameter Estimation in Stochastic Differential Equations
,
Springer
,
Berlin, Germany
.
5.
Aster
,
R. C.
,
Borchers
,
B.
, and
Thurber
,
C. H.
, 2005,
Parameter Estimation and Inverse Problems
,
Elsevier
,
Amsterdam, The Netherlands
/
Academic
,
Boston, MA
.
6.
Liu
,
C. S.
, 2008, “
Identifying Time-Dependent Damping and Stiffness Functions by a Simple and Yet Accurate Method
,”
J. Sound Vib.
0022-460X,
318
, pp.
148
165
.
7.
Araújo
,
A. L.
,
Mota Soares
,
C. M.
,
Herskovits
,
J.
, and
Pedersen
,
P.
, 2009, “
Estimation of Piezoelastic and Viscoelastic Properties in Laminated Structures
,”
Compos. Struct.
0263-8223,
87
(
2
), pp.
168
174
.
8.
Pradlwarter
,
H. J.
,
Pellissetti
,
M. F.
,
Schenk
,
C. A.
,
Schuëller
,
G. I.
,
Kreis
,
A.
,
Fransen
,
S.
,
Calvi
,
A.
, and
Klein
,
M.
, 2005, “
Realistic and Efficient Reliability Estimation for Aerospace Structures
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
194
(
12–16
), pp.
1597
1617
, special issue on computational methods in stochastic mechanics and reliability analysis.
9.
Catania
,
F.
, and
Paladino
,
O.
, 2009, “
Optimal Sampling for the Estimation of Dispersion Parameters in Soil Columns Using an Iterative Genetic Algorithm
,”
Environ. Modell. Software
1364-8152,
24
(
1
), pp.
115
123
.
10.
Varziri
,
M. S.
,
Poyton
,
A. A.
,
McAuley
,
K. B.
,
McLellan
,
P. J.
, and
Ramsay
,
J. O.
, 2008, “
Selecting Optimal Weighting Factors in iPDA for Parameter Estimation in Continuous-Time Dynamic Models
,”
Comput. Chem. Eng.
0098-1354,
32
(
12
), pp.
3011
3022
.
11.
Fathy
,
H. K.
,
Kang
,
D.
, and
Stein
,
J. L.
, 2008, “
Online Vehicle Mass Estimation Using Recursive Least Squares and Supervisory Data Extraction
,”
Proceedings of the 2008 American Control Conference
, pp.
1842
1848
.
12.
Liang
,
J. W.
, 2007, “
Damping Estimation via Energy-Dissipation Method
,”
J. Sound Vib.
0022-460X,
307
, pp.
349
364
.
13.
Oliveto
,
N. D.
,
Scalia
,
G.
, and
Oliveto
,
G.
, 2008, “
Dynamic Identification of Structural Systems With Viscous and Friction Damping
,”
J. Sound Vib.
0022-460X,
318
, pp.
911
926
.
14.
Raïssi
,
T.
,
Ramdani
,
N.
, and
Candau
,
Y.
, 2004, “
Set Membership State and Parameter Estimation for Systems Described by Nonlinear Differential Equations
,”
Automatica
0005-1098,
40
, pp.
1771
1777
.
15.
Mockus
,
J.
,
Eddy
,
W.
,
Mockus
,
A.
,
Mockus
,
L.
, and
Reklaitis
,
G.
, 1997,
Bayesian Heuristic Approach to Discrete and Global Optimization: Algorithms, Vizualization, Software and Applications
,
Kluwer Academic
,
Dordrecht, The Netherlands
.
16.
Thompson
,
B.
, and
Vladimirov
,
I.
, 2005, “
Bayesian Parameter Estimation and Prediction in Mean Reverting Stochastic Diffusion Models
,”
Nonlinear Anal.
0362-546X,
63
, pp.
e2367
e2375
.
17.
Wang
,
J.
, and
Zabaras
,
N.
, 2005, “
Using Bayesian Statistics in the Estimation of Heat Source in Radiation
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
15
29
.
18.
Khan
,
T.
, and
Ramuhalli
,
P.
, 2008, “
A Recursive Bayesian Estimation Method for Solving Electromagnetic Nondestructive Evaluation Inverse Problems
,”
IEEE Trans. Magn.
0018-9464,
44
(
7
), pp.
1845
1855
.
19.
Nocedal
,
J.
, and
Wright
,
S. J.
, 2006,
Numerical Optimization
,
Springer
,
New York
, Vol.
2
.
20.
Horst
,
R.
,
Pardalos
,
P. M.
, and
Thoai
,
N. V.
, 2000,
Introduction to Global Optimization
, 2nd ed.,
Kluwer Academic
,
Dordrecht, The Netherlands
.
21.
Floudas
,
C. A.
, 2000,
Deterministic Global Optimization: Theory, Methods, and Applications
,
Kluwer Academic
,
Dordrecht, The Netherlands
.
22.
1995,
Handbook of Global Optimization
,
R.
Horst
and
P. M.
Pardalos
, eds.,
Kluwer Academic
,
Dordrecht, The Netherlands
, Vol.
1
.
23.
2002,
Handbook of Global Optimization
,
P. M.
Pardalos
and
H. E.
Romeijn
, eds.,
Kluwer Academic
,
Dordrecht, The Netherlands
, Vol.
2
.
24.
Liberti
,
L.
, and
Maculan
,
N.
, 2006,
Global Optimization: From Theory to Implementation
,
Springer
,
Berlin, Germany
.
25.
Davis
,
L.
, 1991,
Handbook of Genetic Algorithms
,
Van Nostrand Reinhold
,
New York
.
26.
Zhang
,
B. T.
, 1999, “
A Bayesian Framework for Evolutionary Computation
,”
Proceedings of the 1999 Congress on Evolutionary Computation
, Vol.
1
, pp.
722
728
.
27.
Sun
,
J.
,
Zhang
,
Q.
, and
Tsang
,
E. P. K.
, 2005, “
DE/EDA: A New Evolutionary Algorithm for Global Optimization
,”
Inf. Sci. (N.Y.)
0020-0255,
169
(
3–4
), pp.
249
262
.
28.
Zhang
,
Q.
,
Sun
,
J.
,
Tsang
,
E.
, and
Ford
,
J.
, 2004, “
Hybrid Estimation of Distribution Algorithm for Global Optimization
,”
Eng. Comput.
0177-0667,
21
(
1
), pp.
91
107
.
29.
Zhang
,
Q.
,
Sun
,
J.
, and
Tsang
,
E. P. K.
, 2005, “
An Evolutionary Algorithm With Guided Mutation for the Maximum Clique Problem
,”
IEEE Trans. Evol. Comput.
1089-778X,
9
(
2
), pp.
192
200
.
30.
Kalman
,
R. E.
, 1960, “
A New Approach to Linear Filtering and Prediction Problems
,”
ASME J. Basic Eng.
0021-9223,
82
, pp.
35
45
.
31.
Evensen
,
G.
, 1992, “
Using the Extended Kalman Filter With a Multi-Layer Quasi-Geostrophic Ocean Model
,”
J. Geophys. Res.
0148-0227,
97
(
C11
), pp.
17905
17924
.
32.
Evensen
,
G.
, 1993, “
Open Boundary Conditions for the Extended Kalman Filter With a Quasi-Geostrophic Mode
,”
J. Geophys. Res.
0148-0227,
98
(
C19
), pp.
16529
16546
.
33.
Evensen
,
G.
, 1994, “
Sequential Data Assimilation With a Non-Linear Quasi-Geostrophic Model Using Monte Carlo Methods to Forecast Error Statistics
,”
J. Geophys. Res.
0148-0227,
99
(
C5
), pp.
10143
10162
.
34.
Blanchard
,
E.
,
Sandu
,
A.
, and
Sandu
,
C.
, 2007, “
Parameter Estimation Method Using an Extended Kalman Filter
,”
Proceedings of the Joint North America, Asia-Pacific ISTVS Conference and Annual Meeting of Japanese Society for Terramechanics
, Fairbanks, AK.
35.
Saad
,
G.
,
Ghanem
,
R. G.
, and
Masri
,
S.
, 2007, “
Robust System Identification of Strongly Non-Linear Dynamics Using a Polynomial Chaos Based Sequential Data Assimilation Technique
,”
Collection of Technical Papers—48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
, Honolulu, HI, Vol.
6
, pp.
6005
6013
.
36.
Snyder
,
C.
,
Bengtsson
,
T.
,
Bickel
,
P.
, and
Anderson
,
J.
, 2008, “
Obstacles to High-Dimensional Particle Filtering
,”
Mon. Weather Rev.
0027-0644,
136
(
12
), pp.
4629
4640
.
37.
Sohns
,
B.
,
Allison
,
J.
,
Fathy
,
H. K.
, and
Stein
,
J. L.
, 2006, “
Efficient Parameterization of Large-Scale Dynamic Models Through the Use of Activity Analysis
,”
Proceedings of the ASME IMECE 2006
, Chicago, IL.
38.
Zhang
,
D.
, and
Lu
,
Z.
, 2004, “
An Efficient, High-Order Perturbation Approach for Flow in Random Porous Media via Karhunen–Loeve and Polynomial Expansions
,”
J. Comput. Phys.
0021-9991,
194
(
2
), pp.
773
794
.
39.
Ghanem
,
R. G.
, and
Spanos
,
P. D.
, 2003,
Stochastic Finite Elements
,
Dover
,
Mineola, NY
.
40.
Ghanem
,
R. G.
, and
Spanos
,
P. D.
, 1990, “
Polynomial Chaos in Stochastic Finite Element
,”
ASME J. Appl. Mech.
0021-8936,
57
, pp.
197
202
.
41.
Ghanem
,
R. G.
, and
Spanos
,
P. D.
, 1991, “
Spectral Stochastic Finite-Element Formulation for Reliability Analysis
,”
J. Eng. Mech.
0733-9399,
117
(
10
), pp.
2351
2372
.
42.
Ghanem
,
R. G.
, and
Spanos
,
P. D.
, 1993, “
A Stochastic Galerkin Expansion for Nonlinear Random Vibration Analysis
,”
Probab. Eng. Mech.
0266-8920,
8
(
3–4
), pp.
255
264
.
43.
Xiu
,
D.
, and
Karniadakis
,
G. E.
, 2002, “
The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations
,”
J. Sci. Comput.
0885-7474,
24
(
2
), pp.
619
644
.
44.
Xiu
,
D.
,
Lucor
,
D.
,
Su
,
C. H.
, and
Karniadakis
,
G. E.
, 2002, “
Stochastic Modeling of Flow-Structure Interactions Using Generalized Polynomial Chaos
,”
ASME J. Fluids Eng.
0098-2202,
124
, pp.
51
59
.
45.
Xiu
,
D.
, and
Karniadakis
,
G. E.
, 2002, “
Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
191
, pp.
4927
4948
.
46.
Xiu
,
D.
, and
Karniadakis
,
G. E.
, 2003, “
Modeling Uncertainty in Flow Simulations via Generalized Polynomial Chaos
,”
J. Comput. Phys.
0021-9991,
187
, pp.
137
167
.
47.
Sandu
,
C.
,
Sandu
,
A.
,
Chan
,
B. J.
, and
Ahmadian
,
M.
, 2004, “
Treating Uncertainties in Multibody Dynamic Systems Using a Polynomial Chaos Spectral Decomposition
,”
Proceedings of the ASME IMECE 2004, Sixth Annual Symposium on Advanced Vehicle Technology
, Anaheim, CA, Paper No. IMECE2004-60482.
48.
Sandu
,
C.
,
Sandu
,
A.
,
Chan
,
B. J.
, and
Ahmadian
,
M.
, 2005, “
Treatment of Constrained Multibody Dynamic Systems With Uncertainties
,”
Proceedings of the SAE Congress 2005
, Detroit, MI, Paper No. 2005-01-0936.
49.
Li
,
L.
,
Sandu
,
C.
, and
Sandu
,
A.
, 2005, “
Modeling and Simulation of a Full Vehicle With Parametric and External Uncertainties
,”
Proceedings of the 2005 ASME International Mechanical Engineering Congress and Exposition, Seventh VDC Annual Symposium on ‘Advanced Vehicle Technologies,’ Session 4: Advances in Vehicle Systems Modeling and Simulation
, Orlando, FL, Paper No. IMECE2005-82101.
50.
Sandu
,
C.
,
Sandu
,
A.
, and
Li
,
L.
, 2006, “
Stochastic Modeling of Terrain Profiles and Soil Parameters
,”
SAE 2005 Transactions Journal of Commercial Vehicles
,
114
(
2
), pp.
211
220
.
51.
Blanchard
,
E.
,
Sandu
,
C.
, and
Sandu
,
A.
, 2007, “
A Polynomial-Chaos-Based Bayesian Approach for Estimating Uncertain Parameters of Mechanical Systems
,”
Proceedings of the ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE 2007, Ninth International Conference on Advanced Vehicle and Tire Technologies (AVTT)
, Las Vegas, NV.
52.
Soize
,
C.
, and
Ghanem
,
R.
, 2004, “
Physical Systems With Random Uncertainties: Chaos Representations With Arbitrary Probability Measure
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
26
(
2
), pp.
395
410
.
53.
Desceliers
,
C.
,
Ghanem
,
R.
, and
Soize
,
C.
, 2006, “
Maximum Likelihood Estimation of Stochastic Chaos Representations From Experimental Data
,”
Int. J. Numer. Methods Eng.
0029-5981,
66
(
6
), pp.
978
1001
.
54.
Desceliers
,
C.
,
Soize
,
C.
, and
Ghanem
,
R.
, 2007, “
Identification of Chaos Representations of Elastic Properties of Random Media Using Experimental Vibration Tests
,”
Comput. Mech.
0178-7675,
39
(
6
), pp.
831
838
.
55.
Li
,
J.
, and
Xiu
,
D.
, 2009, “
A Generalized Polynomial Chaos Based Ensemble Kalman Filter With High Accuracy
,”
J. Comput. Phys.
0021-9991,
228
, pp.
5454
5694
.
56.
Evensen
,
G.
, 2003, “
The Ensemble Kalman Filter: Theoretical Formulation and Practical Implementation
,”
Ocean Dyn.
1616-7341,
53
, pp.
343
367
.
57.
Lenartz
,
F.
,
Raick
,
C.
,
Soetaert
,
K.
, and
Grégoire
,
M.
, 2007, “
Application of an Ensemble Kalman Filter to a 1-D Coupled Hydrodynamic-Ecosystem Model of the Ligurian Sea
,”
J. Mar. Syst.
0924-7963,
68
, pp.
327
348
.
58.
Smith
,
A. H. C.
,
Monti
,
A.
, and
Ponci
,
F.
, 2007, “
Indirect Measurements via a Polynomial Chaos Observer
,”
IEEE Trans. Instrum. Meas.
0018-9456,
56
(
3
), pp.
743
752
.
59.
Wan
,
X.
, and
Karniadakis
,
G. E.
, 2006, “
Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
28
(
3
), pp.
901
928
.
60.
Cheng
,
H.
, and
Sandu
,
A.
, 2009, “
Uncertainty Quantification and Apportionment in Air Quality Models
,”
Environ. Modell. Software
1364-8152,
24
, pp.
917
925
.
61.
Cheng
,
H.
, and
Sandu
,
A.
, 2009, “
Efficient Uncertainty Quantification With the Polynomial Chaos Method for Stiff Systems
,”
Math. Comput. Simul.
0378-4754,
79
(
11
), pp.
3278
3295
.
62.
Wiener
,
N.
, 1938, “
The Homogeneous Chaos
,”
Am. J. Math.
0002-9327,
60
, pp.
897
936
.
63.
Askey
,
R.
, and
Wilson
,
J.
, 1985, “
Some Basic Hypergeometric Polynomials that Generalize Jacobi Polynomials
,”
Mem. Am. Math. Soc.
0065-9266,
319
, pp.
1
55
.
64.
Cohn
,
S. E.
, 1997, “
An Introduction to Estimation Theory
,”
J. Meteorol. Soc. Jpn.
0026-1165,
75
, pp.
257
288
65.
Fisher
,
M.
, 2002, “
Assimilation Techniques (5): Approximate Kalman Filters and Singular Vectors
.”
66.
Simon
,
D. E.
, 2001, “
An Investigation of the Effectiveness of Skyhook Suspensions for Controlling Roll Dynamics of Sport Utility Vehicles Using Magneto-Rheological Dampers
,” Ph.D. thesis, Virginia Tech, Blacksburg, VA.
67.
Halton
,
J. H.
, and
Smith
,
G. B.
, 1964, “
Radical-Inverse Quasi-Random Point Sequence
,”
Commun. ACM
0001-0782,
7
(
12
), pp.
701
702
.
68.
Hammersley
,
J. M.
, 1960, “
Monte Carlo Methods for Solving Multivariables Problems
,”
Ann. N.Y. Acad. Sci.
0077-8923,
86
, pp.
844
874
.
69.
Blanchard
,
E.
,
Sandu
,
A.
, and
Sandu
,
C.
, 2008, “
Parameter Estimation for Mechanical Systems Using an Extended Kalman Filter
,” Computer Science Department, Virginia Tech, Technical Report No. CS-TR-08-18.
70.
Blanchard
,
E.
,
Sandu
,
A.
, and
Sandu
,
C.
, 2007, “
A Polynomial Chaos Based Bayesian Approach for Estimating Uncertain Parameters of Mechanical Systems—Part I: Theoretical Approach
,” Computer Science Department, Virginia Tech, Technical Report No. TR-07-38.
71.
Blanchard
,
E.
,
Sandu
,
A.
, and
Sandu
,
C.
, 2007, “
A Polynomial Chaos Based Bayesian Approach for Estimating Uncertain Parameters of Mechanical Systems—Part II: Applications to Vehicle Systems
,” Computer Science Department, Virginia Tech, Technical Report No. TR-07-39.
You do not currently have access to this content.