This paper is dedicated to the study of stochastic finite-time stability (SFTS) and control synthesis for a class of nonlinear Markovian jump stochastic systems with impulsive effects. By introducing a time-varying stochastic Lyapunov function with discontinuities at impulse times, an improved criterion for SFTS is derived in terms of linear matrix inequalities (LMIs). Based on the new SFTS criterion, four kinds of finite-time hybrid/continuous-time state feedback controllers are constructed by using the solutions to certain sets of LMIs. The effectiveness of the proposed method is validated through one numerical example.
Issue Section:
Technical Brief
References
1.
Mao
, X.
, 1999
, “Stability of Stochastic Differential Equations With Markovian Switching
,” Stochastic Processes Appl.
, 79
(1
), pp. 45
–67
.10.1016/S0304-4149(98)00070-22.
Cao
, Y.-Y.
, and Lam
, J.
, 2000
, “Robust H∞ Control of Uncertain Markovian Jump Systems With Time-Delay
,” IEEE Trans. Autom. Control
, 45
(1
), pp. 77
–83
.10.1109/9.8273583.
Chen
, W.-H.
, Xu
, J.-X.
, and Guan
, Z.-H.
, 2003
, “Guaranteed Cost Control for Uncertain Markovian Jump Systems With Mode-Dependent Time-Delays
,” IEEE Trans. Autom. Control
, 48
(12
), pp. 2270
–2277
.10.1109/TAC.2003.8201654.
Wu
, L.
, Shi
, P.
, and Gao
, H.
, 2010
, “State Estimation and Sliding-Mode Control of Markovian Jump Singular Systems
,” IEEE Trans. Autom. Control
, 55
(5
), pp. 1213
–1219
.10.1109/TAC.2010.20510905.
Boukas
, E. K.
, and Liu
, Z.
, 2001
, “Robust H∞-Control of Discrete-Time Markovian Jump Linear Systems With Mode-Dependent Time-Delays
,” IEEE Trans. Autom. Control
, 46
(12
), pp. 1918
–1924
.10.1109/9.9754766.
Gonçalves
, A. P.
, Fioravanti
, A. R.
, and Geromel
, J. C.
, 2012
, “H∞ Robust and Networked Control of Discrete-Time MJLS Through LMIs
,” J. Franklin Inst.
, 349
(6
), pp. 2171
–2181
.10.1016/j.jfranklin.2012.03.0027.
de Souza
, C. E.
, Trofino
, A.
, and Barbosa
, K. A.
, 2006
, “Mode-Independent Filters for Markovian Jump Linear Systems
,” IEEE Trans. Autom. Control
, 51
(11
), pp. 1837
–1841
.10.1109/TAC.2006.8830608.
Huang
, R.
, Lin
, Y.
, and Lin
, Z.
, 2012
, “Mode-Independent Stabilization of Markovian Jump Systems With Time-Varying Delays: A Sliding Mode Approach
,” ASME J. Dyn. Syst. Meas. Contr.
, 134
(5
), p. 051009
.10.1115/1.40063739.
Wu
, H.
, and Sun
, J.
, 2006
, “p-Moment Stability of Stochastic Differential Equations With Impulsive Jump and Markovian Switching
,” Automatica
, 42
(10
), pp. 1753
–1759
.10.1016/j.automatica.2006.05.00910.
Pan
, S.
, Sun
, J.
, and Zhao
, S.
, 2008
, “Stabilization of Discrete-Time Markovian Jump Linear Systems Via Time-Delayed and Impulsive Controllers
,” Automatica
, 44
(11
), pp. 2954
–2958
.10.1016/j.automatica.2008.04.00411.
Dong
, Y.
, and Sun
, J.
, 2008
, “On Hybrid Control of a Class of Stochastic Non-Linear Markovian Switching Systems
,” Automatica
, 44
(4
), pp. 990
–995
.10.1016/j.automatica.2007.08.00612.
Amato
, F.
, Ariola
, M.
, and Dorato
, P.
, 2001
, “Finite-Time Control of Linear Systems Subject to Parametric Uncertainties and Disturbances
,” Automatica
, 37
(9
), pp. 1459
–1463
.10.1016/S0005-1098(01)00087-513.
Amato
, F.
, Ambrosino
, R.
, Ariola
, M.
, and Cosentino
, C.
, 2009
, “Finite-Time Stability of Linear Time-Varying Systems With Jumps
,” Automatica
, 45
(5
), pp. 1354
–1358
.10.1016/j.automatica.2008.12.01614.
Amato
, F.
, Ambrosino
, R.
, Cosentino
, C.
, and De Tommasi
, G.
, 2011
, “Finite-Time Stabilization of Impulsive Dynamical Linear Systems
,” Nonlinear Anal. Hybrid Syst.
, 5
(1
), pp. 89
–101
.10.1016/j.nahs.2010.10.00115.
Xu
, J.
, Sun
, J.
, and Yue
, D.
, 2012
, “Stochastic Finite-Time Stability of Nonlinear Markovian Switching Systems With Impulsive Effects
,” ASME J. Dyn. Syst. Meas. Contr.
, 134
(1
), p. 011011
.10.1115/1.400535916.
Costa
, O. L. V.
, do Val
, J. B. R.
, and Geromel
, J. C.
, 1999
, “Continuous-Time State-Feedback h2-Control of Markovian Jump Linear Systems Via Convex Analysis
,” Automatica
, 35
(2
), pp. 259
–268
.10.1016/S0005-1098(98)00145-9Copyright © 2015 by ASME
You do not currently have access to this content.