In this paper, linear quadratic regulator (LQR) theory is applied to solve the inverse optimal consensus problem for a second-order linear multi-agent systems (MAS) under independent position and velocity topology. The optimal Laplacian matrices related to the topologies of position and velocity are derived by solving the algebraic Riccati equation (ARE). Theoretically, we obtain the optimal Laplacian matrices, which correspond to the directed strongly connected graphs, for the second-order multi-agent systems. Finally, two simulation examples are provided to verify the theoretical analysis of this paper.
Issue Section:
Research Papers
References
1.
Olfatisaber
, R.
, and Murray
, R. M.
, 2004
, “Consensus Problems in Networks of Agents With Switching Topology and Time-Delays
,” IEEE Trans. Autom. Control
, 49
(9
), pp. 1520
–1533
.2.
Ren
, W.
, Beard
, R. W.
, and Atkins
, E. M.
, 2005
, “A Survey of Consensus Problems in Multi-Agent Coordination
,” American Control Conference
(ACC
), Portland, OR, June 8–10, Vol. 3
, pp. 1859
–1864
.3.
Cao
, Y.
, and Ren
, W.
, 2010
, “Optimal Linear-Consensus Algorithms: An LQR Perspective
,” IEEE Trans. Syst. Man Cybern., Part B
, 40
(3
), pp. 819
–830
.4.
Semsar-Kazerooni
, E.
, and Khorasani
, K.
, 2008
, “Optimal Consensus Algorithms for Cooperative Team of Agents Subject to Partial Information
,” Automatica
, 44
(11
), pp. 2766
–2777
.5.
Shi
, G.
, Johansson
, K. H.
, and Hong
, Y.
, 2013
, “Reaching an Optimal Consensus Dynamical Systems That Compute Intersections of Convex Sets
,” IEEE Trans. Autom. Control
, 58
(3
), pp. 610
–622
.6.
Bauso
, D.
, Giarre
, L.
, and Pesenti
, R.
, 2006
, “Non-Linear Protocols for Optimal Distributed Consensus in Networks of Dynamic Agents
,” Syst. Control Lett.
, 55
(11
), pp. 918
–928
.7.
Zhang
, H.
, Zhang
, J.
, Yang
, G. H.
, and Luo
, Y.
, 2015
, “Leader-Based Optimal Coordination Control for the Consensus Problem of Multiagent Differential Games Via Fuzzy Adaptive Dynamic Programming
,” IEEE Trans. Fuzzy Syst.
, 23
(1
), pp. 152
–163
.8.
Vamvoudakis
, K. G.
, Lewis
, F. L.
, and Hudas
, G. R.
, 2012
, “Multi-Agent Differential Graphical Games: Online Adaptive Learning Solution for Synchronization With Optimality
,” Automatica
, 48
(8
), pp. 1598
–1611
.9.
Semsar-Kazerooni
, E.
, and Khorasani
, K.
, 2009
, “Multi-Agent Team Cooperation: A Game Theory Approach
,” Automatica
, 45
(10
), pp. 2205
–2213
.10.
Wei
, Q.
, Liu
, D.
, and Lewis
, F. L.
, 2015
, “Optimal Distributed Synchronization Control for Continuous-Time Heterogeneous Multi-Agent Differential Graphical Games
,” Inf. Sci.
, 317
, pp. 96
–113
.11.
Ma
, J.
, Zheng
, Y.
, and Wang
, L.
, 2015
, “LQR-Based Optimal Topology of Leader-Following Consensus
,” Int. J. Robust Nonlinear Control
, 25
(17
), pp. 3404
–3421
.12.
Dong
, W.
, 2010
, “Distributed Optimal Control of Multiple Systems
,” Int. J. Control
, 83
(10
), pp. 2067
–2079
.13.
Dunbar
, W. B.
, and Murray
, R. M.
, 2006
, “Distributed Receding Horizon Control for Multi-Vehicle Formation Stabilization
,” Automatica
, 42
(4
), pp. 549
–558
.14.
Zhang
, H.
, Lewis
, F. L.
, and Das
, A.
, 2011
, “Optimal Design for Synchronization of Cooperative Systems: State Feedback, Observer and Output Feedback
,” IEEE Trans. Autom. Control
, 56
(8
), pp. 1948
–1952
.15.
Movric
, K. H.
, and Lewis
, F. L.
, 2014
, “Cooperative Optimal Control for Multi-Agent Systems on Directed Graph Topologies
,” IEEE Trans. Autom. Control
, 59
(3
), pp. 769
–774
.16.
Zhang
, Y.
, and Hong
, Y.
, 2015
, “Distributed Optimization Design for High-Order Multi-Agent Systems
,” 34th Chinese Control Conference
(CCC
), Hangzhou, China, July 28–30, pp. 7251
–7256
.17.
Qin
, J.
, and Yu
, C.
, 2013
, “Coordination of MultiAgents Interacting Under Independent Position and Velocity Topologies
,” IEEE Trans. Neural Networks Learn. Syst.
, 24
(10
), pp. 1588
–1597
.18.
Alefeld
, G.
, and Schneider
, N.
, 1982
, “On Square Roots of M-Matrices
,” Linear Algebra Appl.
, 42
, pp. 119
–132
.19.
Chung
, F. R. K.
, 1992
, Spectral Graph Theory
, American Mathematical Society
, Providence, RI
, Chap. 1.20.
Ren
, W.
, and Atkins
, E.
, 2005
, “Second-Order Consensus Protocols in Multiple Vehicle Systems With Local Interactions
,” AIAA
Paper No. 2005-6238.21.
Ren
, W.
, 2007
, “Second-Order Consensus Algorithm With Extensions to Switching Topologies and Reference Models
,” American Control Conference
(ACC
), New York, July 9–13, pp. 1431
–1436
.22.
Ren
, W.
, 2008
, “On Consensus Algorithms for Double-Integrator Dynamics
,” IEEE Trans. Autom. Control
, 53
(6
), pp. 1503
–1509
.23.
Cheng
, F.
, Yu
, W.
, Wang
, H.
, and Li
, Y.
, 2013
, “Second-Order Consensus Protocol Design in Multi-Agent Systems: A General Framework
,” 32nd Chinese Control Conference
(CCC
), Xi’an, China, July 26–28, pp. 7246
–7251
.http://ieeexplore.ieee.org/document/6640712/24.
Xie
, G.
, and Wang
, L.
, 2007
, “Consensus Control for a Class of Networks of Dynamic Agents
,” Int. J. Robust Nonlinear Control
, 17
(10–11
), pp. 941
–959
.25.
Ren
, W.
, and Beard
, R. W.
, 2005
, “Consensus Seeking in Multiagent Systems Under Dynamically Changing Interaction Topologies
,” IEEE Trans. Autom. Control
, 50
(5
), pp. 655
–661
.26.
Liberzon
, D.
, 2012
, Calculus of Variations and Optimal Control Theory: A Concise Introduction
, Princeton University Press
, Princeton, NJ
, Chap. 6.27.
Lewis
, F. L.
, Vrabie
, D. L.
, and Syrmos
, V. L.
, 2012
, Optimal Control
, 3rd ed., Wiley
, NJ
, Chaps. 3 and 4.Copyright © 2017 by ASME
You do not currently have access to this content.