In this paper, a hierarchical control logic for two-channel hydraulic active roll control (ARC) system, which includes vehicle level control and actuator level control is proposed. Vehicle level control consists of antiroll torque controller and antiroll torque distributor. The antiroll torque controller is designed with “PID + feedforward” algorithm to calculate the total antiroll moment. The antiroll torque distributor is devised based on fuzzy control method to implement an antiroll moment allocation between the front and rear stabilizer bar. Actuator level control is designed based on pressure and displacement, respectively. The contrastive analysis of the two proposed actuator control method is presented. The hardware-in-the-loop (HIL) test platform is proposed to evaluate the performance of the devised control algorithm. The HIL simulation result illustrates that actuator displacement control could generate a relatively accurate antiroll moment, and the vehicle roll stability, yaw stability can be enhanced by the proposed ARC control method.

References

1.
Kong
,
Z. X.
,
Pi
,
D. W.
,
Chen
,
S.
,
Wang
,
H. L.
, and
Wang
,
X. H.
,
2016
, “
Design and Simulation of Hierarchical Control Algorithm for Electric Active Stabilizer Bar System
,”
28th Chinese Control and Decision Conference
(
CCDC
), Yinchuan, Ningxia, May 28–30, pp.
6069
6074
.
2.
Kim
,
H. J.
,
2011
, “
Robust Roll Motion Control of a Vehicle Using Integrated Control Strategy
,”
Control Eng. Pract.
,
19
(
8
), pp.
820
827
.
3.
Cimba
,
D.
,
Wagner
,
J.
, and
Baviskar
,
A.
,
2006
, “
Investigation of Active Torsion Bar Actuator Configurations to Reduce Vehicle Body Roll
,”
Veh. Syst. Dyn.
,
44
(
9
), pp.
719
736
.
4.
Varga
,
B.
,
Németh
,
B.
, and
Gáspár
,
P.
,
2015
, “
Design of Anti-Roll Bar Systems Based on Hierarchical Control
,”
J. Mech. Eng.
,
61
(
6
), pp.
374
382
.
5.
Yim
,
S.
,
Jeon
,
K.
, and
Yi
,
K.
,
2012
, “
An Investigation Into Vehicle Rollover Prevention by Coordinated Control of Active Anti-Roll Bar and Electronic Stability Program
,”
Int. J. Control Autom. Syst.
,
10
(
2
), pp.
275
287
.
6.
Her
,
H.
,
Suh
,
J.
, and
Yi
,
K.
,
2015
, “
Integrated Control of the Differential Braking, the Suspension Damping Force and the Active Roll Moment for Improvement in the Agility and the Stability
,”
Proc. Inst. Mech. Eng., Part D: J. Automob. Eng.
,
229
(
9
), pp.
1145
1157
.
7.
Yim
,
S.
,
Jeon
,
K.
, and
Yi
,
K.
,
2013
, “
Design of an Active Roll Control System for Hybrid Four-Wheel-Drive Vehicles
,”
Proc. Inst. Mech. Eng., Part D: J. Automob. Eng.
,
227
(
2
), pp.
151
163
.
8.
Lin
,
R. C.
,
Cebon
,
D.
, and
Cole
,
D. J.
,
1996
, “
Active Roll Control of Articulated Vehicles
,”
Veh. Syst. Dyn.
,
26
(
1
), pp.
17
43
.
9.
Jeon
,
K.
,
Hwang
,
H.
,
Choi
,
S.
,
Kim
,
J.
,
Jang
,
K.
, and
Yi
,
K.
,
2012
, “
Development of an Electric Active Roll Control (ARC) Algorithm for a SUV
,”
Int. J. Automot. Technol.
,
13
(
2
), pp.
247
253
.
10.
Sorniotti
,
A.
,
2006
, “Electro-Mechanical Active Roll Control: A New Solution for Active Suspensions,”
SAE
Paper No. 2006-01-1966.
11.
Cronjé
,
P. H.
, and
Els
,
P. H.
,
2010
, “
Improving Off-Road Vehicle Handling Using an Active Anti-Roll Bar
,”
J. Terramech.
,
47
(
3
), pp.
179
189
.
12.
Buma
,
S.
,
Okuma
,
Y.
,
Tenda
,
A.
,
Suzuki
,
K.
,
Cho
,
J. S.
, and
Kobayashi
,
M.
,
2010
, “
Design and Development of Electric Active Stabilizer Suspension System
,”
J. Syst. Des. Dyn.
,
4
(
1
), pp.
61
76
.
13.
Mizuta
,
Y.
,
Suzumura
,
M.
, and
Matsumoto
,
S.
,
2010
, “
Ride Comfort Enhancement and Energy Efficiency Using Electric Active Stabiliser System
,”
Veh. Syst. Dyn.
,
48
(
11
), pp.
1305
1323
.
14.
Kim
,
S.
,
Park
,
K.
,
Song
,
J.
,
Hwang
,
Y. K.
,
Moon
,
S. J.
,
Ahn
,
H. S.
, and
Tomizuka
,
M.
,
2012
, “
Development of Control Logic for Hydraulic Active Roll Control System
,”
Int. J. Automot. Technol.
,
13
(
1
), pp.
87
95
.
15.
Williams
,
D. E.
, and
Haddad
,
W. M.
,
1995
, “
Nonlinear Control of Roll Moment Distribution to Influence Vehicle Yaw Characteristics
,”
IEEE Trans. Control Syst. Technol.
,
3
(
1
), pp.
110
116
.
16.
Öttgen
,
S.
, and
Bertram
,
T.
,
2002
, “
Influencing Vehicle Handling Through Active Roll Moment Distribution
,”
Sixth International Symposium on Advanced Vehicle Control
, Hiroshima, Japan, Sept. 9–13, pp.
129
134
.
17.
Sorniotti
,
A.
, and
Nicolò
,
D.
,
2007
, “Vehicle Dynamics Simulation to Develop an Active Roll Control System,”
SAE
Paper No. 2007-01-0828.
18.
Pi
,
D. W.
,
Chen
,
N.
, and
Zhang
,
B. J.
,
2011
, “
Experimental Demonstration of a Vehicle Stability Control System in a Split-μ Manoeuvre
,”
Proc. Inst. Mech. Eng., Part D: J. Automob. Eng.
,
225
(
3
), pp.
305
317
.
19.
Ghike
,
C.
, and
Shim
,
T.
,
2006
, “
14 Degree-of-Freedom Vehicle Model for Roll Dynamics Study
,”
SAE
Paper No. 2006-01-1277.
20.
Dugoff
,
H.
,
Fancher
,
P. S.
, and
Segel
,
L.
,
1970
, “An Analysis of Tire Traction Properties and Their Influence on Vehicle Dynamic Performance,” SAE Paper No. 700377.
21.
Buma
,
S.
,
Satou
,
H.
,
Yonekawa
,
T.
,
Ohnuma
,
T.
,
Hattori
,
K.
, and
Sugihara
,
M.
,
1991
, “
Synthesis and Development of the Active Control Suspension
,”
Trans. Jpn. Soc. Mech. Eng. C
,
57
(
534
), pp.
599
605
.
22.
Liberzon
,
D.
,
2003
,
Switching in Systems and Control
,
Birkhauser Basel Press
,
Berlin
, Chap. 2.
23.
Wang
,
J. X.
,
Chen
,
N.
,
Pi
,
D. W.
, and
Yin
,
G. D.
,
2009
, “
Agent-Based Coordination Framework for Integrated Vehicle Chassis Control
,”
Proc. Inst. Mech. Eng., Part D: J. Automob. Eng.
,
223
(
5
), pp.
601
621
.
24.
Baffet
,
G.
,
Charara
,
A.
, and
Stephant
,
J.
,
2007
, “
Vehicle-Dynamic Observers: Simulations and Experiments
,”
Int. J. Veh. Auton. Syst.
,
5
(
3/4
), pp.
184
203
.
25.
SAE,
1996
, “Steady-State Directional Control Test Procedures for Passenger Cars and Light Trucks,” SAE Publications, Warrendale, PA, SAE Standard No.
J266_199601
.https://www.sae.org/standards/content/j266_199601/
You do not currently have access to this content.