The longitudinal platoon control problem is considered under a leader and predecessor following scheme with a novel velocity-dependent spacing policy. With this spacing policy, the steady-state intervehicle distances increase with increasing cruise velocity and more so for vehicles that are closer to the leader. Since significant changes might be encountered in intervehicle distances during the travel due to the variations in the velocity of the leader, the problem is studied together with a more accurate modeling of aerodynamic effects within a platoon formation. Based on a standard feedback linearization approach, a dynamic output feedback synthesis problem is formulated with two H performance objectives. One of the performance objectives is linked to the string stability of the platoon formation, while the other can be shaped in a way to maintain small spacing errors without aggressive vehicle maneuvers. A synthesis procedure is then outlined based on linear matrix inequality optimization (LMI). The new control scheme is investigated for a three-vehicle platoon by using an advanced aerodynamic model developed based on extensive fluid dynamic simulations. It is observed in this investigation that a desirable platoon operation can be achieved even with a simple aerodynamic model, provided that the controller is designed in a way to ensure good disturbance attenuation. Nevertheless, an accurate modeling of aerodynamic disturbances might be needed especially for the first vehicle after the leader when the cruising velocity varies over a wide range.

References

1.
Ioannou
,
P.
, ed.,
1997
,
Automated Highway Systems
,
Plenum Press
,
New York
.
2.
Browand
,
F.
,
Zabat
,
M.
, and
Tokumaru
,
P.
,
1997
, “
Aerodynamic Benefits From Close-Following
,”
Automated Highway Systems
,
P.
Ioannou
, ed.,
Plenum Press
,
New York
, pp.
247
264
.
3.
Rajamani
,
R.
,
Choi
,
S. B.
,
Law
,
B. K.
,
Hedrick
,
J. K.
,
Prohaska
,
R.
, and
Kretz
,
P.
,
2000
, “
Design and Experimental Implementation of Longitudinal Control for a Platoon of Automated Vehicles
,”
ASME J. Dyn. Syst. Meas. Control
,
122
(
3
), pp.
470
476
.
4.
Rajamani
,
R.
,
Tan
,
H. S.
,
Law
,
B. K.
, and
Zhang
,
W. B.
,
2000
, “
Demonstration of Integrated Longitudinal and Lateral Control for the Operation of Automated Vehicles in Platoons
,”
IEEE Trans. Control Syst. Technol.
,
8
(
4
), pp.
695
708
.
5.
Naus
,
G. J. L.
,
Vugts
,
R. P. A.
,
Ploeg
,
J.
,
van de Molengraft
,
M. J. G.
, and
Steinbuch
,
M.
,
2010
, “
String-Stable CACC Design and Experimental Validation: A Frequency-Domain Approach
,”
IEEE Trans. Veh. Technol.
,
59
(
9
), pp.
4268
4279
.
6.
Ploeg
,
J.
,
Shukla
,
D. P.
,
van de Wouw
,
N.
, and
Nijmeijer
,
H.
,
2014
, “
Controller Synthesis for String Stability of Vehicle Platoons
,”
IEEE Trans. Intell. Transp. Syst.
,
15
(
2
), pp.
854
865
.
7.
Öncü
,
S.
,
Ploeg
,
J.
,
van de Wouw
,
N.
, and
Nijmeijer
,
H.
,
2014
, “
Cooperative Adaptive Cruise Control: Network-Aware Analysis of String Stability
,”
IEEE Trans. Intell. Transp. Syst.
,
15
(
4
), pp.
1527
1537
.
8.
Ploeg
,
J.
,
Kazerooni
,
E. S.
,
van de Wouw
,
N.
, and
Nijmeijer
,
H.
,
2015
, “
Graceful Degradation of Cooperative Adaptive Cruise Control
,”
IEEE Trans. Intell. Transp. Syst.
,
16
(
1
), pp.
488
497
.
9.
Alam
,
A.
,
Mårtensson
,
J.
, and
Johansson
,
K. H.
,
2015
, “
Experimental Evaluation of Decentralized Cooperative Cruise Control for Heavy-Duty Vehicle Platooning
,”
Control Eng. Pract.
,
38
, pp.
11
25
.
10.
Kianfar
,
R.
,
Falcone
,
P.
, and
Fredriksson
,
J.
,
2015
, “
A Control Matching Model Predictive Control Approach to String Stable Vehicle Platooning
,”
Control Eng. Pract.
,
45
, pp.
163
173
.
11.
Turri
,
V.
,
Besselink
,
B.
, and
Johansson
,
K. H.
,
2017
, “
Cooperative Look-Ahead Control for Fuel-Efficient and Safe Heavy-Duty Vehicle Platooning
,”
IEEE Trans. Control Syst. Technol.
,
25
(
1
), pp.
12
28
.
12.
Swaroop
,
D.
, and
Hedrick
,
J. K.
,
1996
, “
String Stability of Interconnected Systems
,”
IEEE Trans. Autom. Control
,
41
(
3
), pp.
349
357
.
13.
Sheikholeslam
,
S.
, and
Desoer
,
C. A.
,
1992
, “
A System Level Study of the Longitudinal Control of a Platoon of Vehicles
,”
ASME J. Dyn. Syst. Meas. Control
,
114
(
2
), pp.
286
292
.
14.
Sheikholeslam
,
S.
, and
Desoer
,
C. A.
,
1993
, “
Longitudinal Control of a Platoon of Vehicles With No Communication of Lead Vehicle Information: A System Level Study
,”
IEEE Trans. Veh. Technol.
,
42
(
4
), pp.
546
554
.
15.
Ioannou
,
P. A.
, and
Chien
,
C. C.
,
1993
, “
Autonomous Intelligent Cruise Control
,”
IEEE Trans. Veh. Technol.
,
42
(
4
), pp.
657
672
.
16.
Eyre
,
J.
,
Yanakiev
,
D.
, and
Kanellakopoulos
,
I.
,
1998
, “
A Simplified Framework for String Stability Analysis of Automated Vehicles
,”
Veh. Syst. Dyn.
,
30
(
5
), pp.
375
405
.
17.
Swaroop
,
D.
, and
Hedrick
,
J. K.
,
1999
, “
Constant Spacing Strategies for Platooning in Automated Highway Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
121
(
3
), pp.
462
470
.
18.
Seiler
,
P.
,
Pant
,
A.
, and
Hedrick
,
K.
,
2004
, “
Disturbance Propagation in Vehicle Strings
,”
IEEE Trans. Autom. Control
,
49
(
10
), pp.
1835
1841
.
19.
Shaw
,
E.
, and
Hedrick
,
J. K.
,
2007
, “
Controller Design for String Stable Heterogenous Vehicle Strings
,”
46th IEEE Conference on Decision and Control
(
CDC
), New Orleans, LA, Dec. 12–14, pp.
2868
2875
.
20.
Shaw
,
E.
, and
Hedrick
,
J. K.
,
2007
, “
String Stability Analysis for Heterogenous Vehicle Strings
,”
American Control Conference
(
ACC
), New York, July 9–13, pp.
3118
3125
.
21.
Cook
,
P.
,
2007
, “
Stable Control of Vehicle Convoys for Safety and Comfort
,”
IEEE Trans. Autom. Control
,
52
(
3
), pp.
526
531
.
22.
Rajamani
,
R.
,
2012
,
Vehicle Dynamics and Control
, 2nd ed.,
Springer
,
New York
.
23.
Ploeg
,
J.
,
van de Wouw
,
N.
, and
Nijmeijer
,
H.
,
2014
, “ Lp
String Stability of Cascaded Systems: Application to Vehicle Platooning
,”
IEEE Trans. Control Syst. Technol.
,
22
(
2
), pp.
786
793
.
24.
Johanović
,
M. R.
,
Fowler
,
J. M.
,
Bamieh
,
B.
, and
D'Andrea
,
R.
,
2008
, “
On the Peaking Phenomenon in the Control of Vehicular Platoons
,”
Syst. Control Lett.
,
57
(
7
), pp.
528
537
.
25.
Swaroop
,
D.
,
Hedrick
,
J. K.
,
Chien
,
C. C.
, and
Ioannou
,
P.
,
1994
, “
A Comparison of Spacing and Headway Control Laws for Automatically Controlled Vehicles
,”
Veh. Syst. Dyn.
,
23
(
1
), pp.
597
625
.
26.
Yanakiev
,
D.
, and
Kanellakopoulos
,
I.
,
1998
, “
Nonlinear Spacing Policies for Automated Heavy-Duty Vehicles
,”
IEEE Trans. Veh. Technol.
,
47
(
4
), pp.
1365
1377
.
27.
Rajamani
,
R.
, and
Zhu
,
C.
,
2002
, “
Semi-Autonomous Adaptive Cruise Control Systems
,”
IEEE Trans. Veh. Technol.
,
51
(
5
), pp.
1186
1192
.
28.
Santhanakrishnan
,
K.
, and
Rajamani
,
R.
,
2003
, “
On Spacing Policies for Highway Vehicle Automation
,”
IEEE Trans. Intell. Transp. Syst.
,
4
(
4
), pp.
198
204
.
29.
Swaroop
,
D.
,
1995
, “
String Stability of Interconnected Systems: An Application to Platooning in Automated Highway Systems
,”
Ph.D. thesis
, University of California, Berkeley, Berkeley, CA.https://ideas.repec.org/p/cdl/itsrrp/qt86z6h1b1.html
30.
Klinge
,
S.
, and
Middleton
,
R. H.
,
2009
, “
Time Headway Requirements for String Stability of Homogenous Linear Unidirectionally Connected Systems
,”
Joint 47th IEEE Conference on Decision and Control and 28th Chinese Control Conference
(
CDC/CCC
), Shanghai, China, Dec. 15–18, pp.
1992
1997
.
31.
Xiao
,
L.
, and
Gao
,
F.
,
2011
, “
Practical String Stability of Platoon of Adaptive Cruise Control Vehicles
,”
IEEE Trans. Intell. Transp. Syst.
,
12
(
4
), pp.
1184
1194
.
32.
Huang
,
S.
, and
Ren
,
W.
,
1998
, “
Longitudinal Control With Time Delay in Platooning
,”
IEEE Proc., Part D
,
145
(
2
), pp.
211
217
.
33.
Peters
,
A. A.
, and
Middleton
,
R. H.
,
2011
, “
Leader Velocity Tracking and String Stability in Homogenous Vehicle Formations With a Constant Spacing Policy
,”
Ninth IEEE International Conference on Control and Automation
(
ICCA
), Santiago, Chile, Dec. 19–21, pp.
42
46
.
34.
Guo
,
G.
, and
Yue
,
W.
,
2012
, “
Autonomous Platoon Control Allowing Range-Limited Sensors
,”
IEEE Trans. Veh. Technol.
,
61
(
7
), pp.
2901
2912
.
35.
Liu
,
X.
,
Goldsmith
,
A.
,
Mahal
,
S. S.
, and
Hedrick
,
J. K.
,
2001
, “
Effects of Communication Delay on String Stability in Vehicle Platoons
,”
IEEE Intelligent Transportation Systems Conference
(
ITSC
), Oakland, CA, Aug. 25–29, pp.
625
630
.
36.
Lu
,
X. Y.
,
Shladover
,
S.
, and
Hedrick
,
J. K.
,
2004
, “
Heavy-Duty Truck Control: Short Inter-Vehicle Distance Following
,”
American Control Conference
(
ACC
), Boston, MA, June 30–July 2, pp.
4722
4727
.http://ieeexplore.ieee.org/document/1384058/
37.
Lu
,
X. Y.
, and
Hedrick
,
J. K.
,
2004
, “
Practical String Stability of Longitudinal Control of Automated Vehicles
,”
Veh. Syst. Dyn. Suppl.
,
41
, pp.
577
586
.https://trid.trb.org/view.aspx?id=745079
38.
Öncü
,
S.
,
van de Wouw
,
N.
,
Heemels
,
W. P. M. H.
, and
Nijmeijer
,
H.
,
2012
, “
String Stability of Interconnected Vehicles Under Communication Constraints
,”
51st IEEE Conference on Decision and Control
(
CDC
), Maui, HI, Dec. 10–13, pp.
2459
2464
.
39.
Xiao
,
L.
,
Gao
,
F.
, and
Wang
,
J.
,
2009
, “
On Scalability of Platoon of Automated Vehicles for Leader-Predecessor Information Framework
,”
IEEE Intelligent Vehicles Symposium
(
IVS
), Xi′an, China, June 3–5, pp.
1103
1108
.
40.
Zabat
,
M.
,
Stabile
,
N.
,
Farascaroli
,
S.
, and
Browand
,
F.
,
1995
, “
The Aerodynamic Performance of Platoons: A Final Report
,” Institute of Transportation Studies, UC Berkeley, Berkeley, CA, Report No.
UCB-ITS-PRR-95-35
.http://www.its.berkeley.edu/sites/default/files/publications/UCB/95/PRR/UCB-ITS-PRR-95-35.pdf
41.
Mirzaei
,
M.
, and
Krajnović
,
S.
,
2014
, “
Numerical Simulation of Two Vehicles at Short Distances in a Platoon
,”
First International Conference in Numerical and Experimental Aerodynamics of Road Vehicles and Trains (Aerovehicles 1)
, Bordeaux, France, June 23–25.http://publications.lib.chalmers.se/publication/211164-numerical-simulation-of-two-vehicles-at-short-distances-in-a-platoon
42.
Schito
,
P.
, and
Braghin
,
F.
,
2012
, “
Numerical and Experimental Investigation on Vehicles in Platoon
,”
SAE Int. J. Commer. Veh.
,
5
(
1
), pp.
63
71
.
43.
Kaku
,
A.
,
Mukai
,
M.
, and
Kawabe
,
T.
,
2012
, “
A Centralized Control System for Ecological Vehicle Platooning Using Linear Quadratic Regulator Theory
,”
Artif. Life Rob.
,
17
(
1
), pp.
70
74
.
44.
Deng
,
Q.
,
2016
, “
A General Simulation Framework for Modeling and Analysis of Heavy-Duty Vehicle Platooning
,”
IEEE Trans. Intell. Transp. Syst.
,
17
(
11
), pp.
3252
3262
.
45.
Köroğlu
,
H.
, and
Falcone
,
P.
,
2017
, “
Robust Static Output Feedback Synthesis for Platoons Under Leader and Predecessor Feedback
,”
Int. J. Robust Nonlinear Control
,
27
(
10
), pp.
1726
1756
.
46.
Alam
,
A.
,
2014
, “
Fuel-Efficient Heavy-Duty Vehicle Platooning
,”
Ph.D. thesis
, Royal Institute of Technology (KTH), Stockholm, Sweden.https://pdfs.semanticscholar.org/983b/08e97fc88d10bc0dac1444b5318c1baa6d93.pdf
47.
Lu
,
X. Y.
, and
Hedrick
,
J. K.
,
2005
, “
Heavy-Duty Vehicle Modeling and Longitudinal Control
,”
Veh. Syst. Dyn.
,
43
(
9
), pp.
653
669
.
48.
Yue
,
W.
, and
Guo
,
G.
,
2012
, “
Guaranteed Cost Adaptive Control of Nonlinear Platoons With Actuator Delay
,”
ASME J. Dyn. Syst. Meas. Control
,
134
(
5
), p.
051012
.
49.
Warnick
,
S. C.
, and
Rodriguez
,
A. A.
,
2000
, “
A Systematic Antiwindup Strategy and the Longitudinal Control of a Platoon of Vehicles With Control Saturations
,”
IEEE Trans. Veh. Technol.
,
49
(
3
), pp.
1006
1016
.
50.
Wong
,
J. Y.
,
2008
,
Theory of Ground Vehicles
, 4th ed.,
Wiley
,
Hoboken, NJ
.
51.
Scherer
,
C. W.
,
Gahinet
,
P.
, and
Chilali
,
M.
,
1997
, “
Multiobjective Output-Feedback Control Via LMI Optimization
,”
IEEE Trans. Autom. Control
,
42
(
7
), pp.
896
911
.
52.
Ahmed
,
S. R.
,
1983
, “
Influence of Base Slant on the Wake Structure and Drag of Road Vehicles
,”
ASME J. Fluids Eng.
,
105
(
4
), pp.
429
434
.
53.
Krajnović
,
S.
, and
Davidson
,
L.
,
2005
, “
Flow Around a Simplified Car—Part 1: Large Eddy Simulation
,”
ASME J. Fluids Eng.
,
127
(
5
), pp.
907
918
.
You do not currently have access to this content.