The main intention of this study is to develop a sampled-data H fuzzy controller design to analyze the stability of coupled ordinary differential equation (ODE)–partial differential equation (PDE) systems, where the nonlinear coupled system is expressed by Takagi–Sugeno (T–S) fuzzy models. The coupled ODE–PDE system in this paper constitutes an n–dimensional nonlinear subsystem of ODEs and a scalar linear parabolic subsystem of PDE. Then, in regard to the T–S model representation, Lyapunov technique is utilized to model a sampled-data H fuzzy controller to stabilize the contemplated coupled systems and to attain a desired H disturbance attenuation performance. The formulated time-dependent Lyapunov functional makes full use of the accessible information about the actual sampling pattern. The outcome of the sampled-data H fuzzy control problem is expressed as linear matrix inequality (LMI) optimization problem which can be solved effectively by using any of the available softwares. Finally, hypersonic rocket car model is furnished with simulation results to exhibit the efficacy of the proposed theoretical results.

References

1.
Zhao
,
X. W.
, and
Weiss
,
G.
,
2011
, “
Controllability and Observability of a Well-Posed System Coupled With a Finite-Dimensional System
,”
IEEE Trans. Autom. Control
,
56
(
1
), pp.
88
99
.
2.
Lattanzio
,
C.
,
Maurizi
,
A.
, and
Piccoli
,
B.
,
2011
, “
Moving Bottlenecks in Car Traffic Flow: A PDE-ODE Coupled Model
,”
SIAM J. Math. Anal.
,
43
(
1
), pp.
50
67
.
3.
Diehl
,
S.
, and
Faras
,
S.
,
2013
, “
Control of an Ideal Activated Sludge Process in Wastewater Treatment Via an ODE–PDE Model
,”
J. Process Control
,
23
(
3
), pp.
359
381
.
4.
Krstic
,
M.
,
2009
, “
Compensating Actuator and Sensor Dynamics Governed by Diffusion PDEs
,”
Syst. Control Lett.
,
58
(
5
), pp.
372
377
.
5.
Tang
,
S. X.
, and
Xie
,
C. K.
,
2011
, “
Stabilization for a Coupled PDE–ODE Control System
,”
J. Franklin Inst.
,
348
(
8
), pp.
2142
2155
.
6.
Daafouz
,
J.
,
Tucsnak
,
M.
, and
Valein
,
J.
,
2014
, “
Nonlinear Control of a Coupled PDE/ODE System Modeling a Switched Power Converter With a Transmission Line
,”
Syst. Control Lett.
,
70
, pp.
92
99
.
7.
Li
,
X.
,
Ding
,
C.
, and
Zhu
,
Q.
,
2010
, “
Synchronization of Stochastic Perturbed Chaotic Neural Networks With Mixed Delays
,”
J. Franklin Inst.
,
347
(
7
), pp.
1266
1280
.
8.
Wu
,
H.-N.
,
Zhu
,
H.-Y.
, and
Wang
,
J.-W.
,
2015
, “
H∞ Fuzzy Control for a Class of Nonlinear Coupled ODE-PDE Systems With Input Constraint
,”
IEEE Trans. Fuzzy Syst.
,
23
(
3
), pp.
593
604
.
9.
Takagi
,
T.
, and
Sugeno
,
M.
,
1985
, “
Fuzzy Identification of Systems and Its Applications to Modeling and Control
,”
IEEE Trans. Syst. Man Cybern.
,
15
(
1
), pp.
116
132
.
10.
Namadchian
,
Z.
,
Zare
,
A.
, and
Namadchian
,
A.
,
2014
, “
Stability Analysis of Nonlinear Dynamic Systems by Nonlinear Takagi–Sugeno–Kang Fuzzy Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
136
(
2
), p.
021019
.
11.
Wang
,
H.
,
Tanaka
,
K.
, and
Griffin
,
M.
,
1996
, “
An Approach to Fuzzy Control of Nonlinear Systems: Stability and Design Issues
,”
IEEE Trans. Fuzzy Syst.
,
4
(
1
), pp.
14
23
.
12.
Ohtake
,
H.
,
Tanaka
,
K.
, and
Wang
,
H.
,
2003
, “
Fuzzy Modeling Via Sector Nonlinearity Concept
,”
Integr. Comput. Aided Eng.
,
10
(
4
), pp.
333
341
.
13.
Ghorbel
,
H.
,
El Hajjaji
,
A.
,
Souissi
,
M.
, and
Chaabane
,
M.
,
2014
, “
Robust Tracking Control for Takagi–Sugeno Fuzzy Systems With Unmeasurable Premise Variables: Application to Tank System
,”
ASME J. Dyn. Syst. Meas. Control
,
136
(
4
), p.
041011
.
14.
Tanaka
,
K.
, and
Wang
,
H.
,
2004
,
Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach
,
Wiley
,
New York
.
15.
Boyd
,
S.
,
El Ghaoui
,
L.
,
Feron
,
E.
, and
Balakrishnan
,
V.
,
1994
,
Linear Matrix Inequalities in System and Control Theory
,
SIAM
,
Philadelphia, PA
.
16.
Jeung
,
E. T.
, and
Lee
,
K. R.
,
2014
, “
Static Output Feedback Control for Continuous-Time T-S Fuzzy Systems: An lmi Approach
,”
Int. J. Control, Autom, Syst.
,
12
(
3
), pp.
703
708
.
17.
Song
,
M. K.
,
Park
,
J. B.
, and
Joo
,
Y. H.
,
2015
, “
Robust Stabilization for Uncertain Markovian Jump Fuzzy Systems Based on Free Weighting Matrix Method
,”
Fuzzy Sets Syst.
,
277
, pp.
81
96
.
18.
Nguang
,
S. K.
, and
Shi
,
P.
,
2003
, “
H∞ Fuzzy Output Feedback Control Design for Nonlinear Systems: An LMI Approach
,”
IEEE Trans. Fuzzy Syst.
,
11
(
3
), pp.
331
340
.
19.
Chang
,
X. H.
,
Zhang
,
L.
, and
Park
,
J. H.
,
2015
, “
Robust Static Output Feedback H∞ Control for Uncertain Fuzzy Systems
,”
Fuzzy Sets Syst.
,
273
, pp.
87
104
.
20.
Wu
,
H.-N.
, and
Li
,
H.-X.
,
2008
, “
H∞ Fuzzy Observer-Based Control for a Class of Nonlinear Distributed Parameter Systems With Control Constraints
,”
IEEE Trans. Fuzzy Syst.
,
16
(
2
), pp.
502
516
.
21.
Chen
,
B.
, and
Chang
,
Y.
,
2009
, “
Fuzzy State-Space Modeling and Robust Observer-Based Control Design for Nonlinear Partial Differential Systems
,”
IEEE Trans. Fuzzy Syst.
,
17
(
5
), pp.
1025
1043
.
22.
Liu
,
X.
,
2010
, “
Synchronization of Linearly Coupled Neural Networks With Reaction–Diffusion Terms and Unbounded Time Delays
,”
Neurocomputing
,
73
(
13
), pp.
2681
2688
.
23.
Lei
,
J.
,
2013
, “
Optimal Vibration Control for Uncertain Nonlinear Sampled-Data Systems With Actuator and Sensor Delays: Application to a Vehicle Suspension
,”
ASME J. Dyn. Syst. Meas. Control
,
135
(
2
), p.
021021
.
24.
Su
,
L.
, and
Shen
,
H.
,
2015
, “
Mixed H∞/Passive Synchronization for Complex Dynamical Networks With Sampled-Data Control
,”
Appli. Math. Comput.
,
259
, pp.
931
942
.
25.
Wu
,
H. N.
, and
Wang
,
Z. P.
,
2017
, “
Observer-Based H∞ Sampled-Data Fuzzy Control for a Class of Nonlinear Parabolic PDE Systems
,”
IEEE Trans. Fuzzy Syst.
,
PP
(99), p. 1.
26.
Pertew
,
A. M.
,
Marquez
,
H. J.
, and
Zhao
,
Q.
,
2009
, “
Sampled-Data Stabilization of a Class of Nonlinear Systems With Application in Robotics
,”
ASME J. Dyn. Syst. Meas. Control
,
131
(
2
), p.
021008
.
27.
Jiang
,
X.
,
2015
, “
On Sampled-Data Fuzzy Control Design Approach for T–S Model-Based Fuzzy Systems by Using Discretization Approach
,”
Inf. Sci.
,
296
, pp.
307
314
.
28.
Wu
,
Z.-G.
,
Shi
,
P.
,
Su
,
H.
, and
Lu
,
R.
,
2015
, “
Dissipativity-Based Sampled-Data Fuzzy Control Design and Its Application to Truck-Trailer System
,”
IEEE Trans. Fuzzy Syst.
,
23
(
5
), pp.
1669
1679
.
29.
Wu
,
Z.-G.
,
Shi
,
P.
,
Su
,
H.
, and
Chu
,
J.
,
2014
, “
Sampled-Data Fuzzy Control of Chaotic Systems Based on a T–S Fuzzy Model
,”
IEEE Trans. Fuzzy Syst.
,
22
(
1
), pp.
153
163
.
30.
Dharani
,
S.
,
Rakkiyappan
,
R.
, and
Cao
,
J.
,
2015
, “
Robust Stochastic Sampled-Data H∞ Control for a Class of Mechanical Systems With Uncertainties
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
10
), p.
101008
.
31.
Katayama
,
H.
, and
Ichikawa
,
A.
,
2004
, “
H∞ Control for Sampled-Data Nonlinear Systems Described by Takagi–Sugeno Fuzzy Systems
,”
Fuzzy Sets Syst.
,
148
(
3
), pp.
431
452
.
32.
Rakkiyappan
,
R.
,
Dharani
,
S.
, and
Zhu
,
Q.
,
2015
, “
Synchronization of Reaction–Diffusion Neural Networks With Time-Varying Delays Via Stochastic Sampled-Data Controller
,”
Nonlinear Dyn.
,
79
(
1
), pp.
485
500
.
33.
Gu
,
K.
,
Kharitonov
,
V. L.
, and
Chen
,
J.
,
2003
,
Stability of Time-Delay Systems
,
Springer Science & Business Media
,
Birkhauser, Basel, Switzerland
.
34.
Krstic
,
M.
, and
Smyshlyaev
,
A.
,
2008
,
Boundary Control of PDEs: A Course on Backstepping Designs
, Vol.
16
,
SIAM
,
Philadelphia, PA
.
35.
Gao
,
H.
, and
Chen
,
T.
,
2007
, “
Stabilization of Nonlinear Systems Under Variable Sampling: A Fuzzy Control Approach
,”
IEEE Trans. Fuzzy Syst.
,
15
(
5
), pp.
972
983
.
36.
Pesch
,
H. J.
,
Rund
,
A.
,
Wahl
,
W. V.
, and
Wendl
,
S.
,
2010
, “
On Some New Phenomena in State-Constrained Optimal Control If ODEs as Well as PDEs are Involved
,”
Control Cybern.
,
39
(3), pp.
647
660
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.410.8535&rep=rep1&type=pdf
You do not currently have access to this content.