In this work, we establish a new estimate result for fractional differential inequality, and this inequality is used to derive a robust sliding mode control law for the fractional-order (FO) dynamic systems. The sliding mode control law is provided to make the states of the system asymptotically stable. Some examples are given to illustrate the results.
Issue Section:
Technical Brief
References
1.
Kilbas
, A. A.
, Srivastava
, H. M.
, and Trujillo
, J. J.
, 2006
, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies
, Vol. 204
, Elsevier
, Amsterdam, The Netherlands
.2.
Baleanu
, D.
, Machado
, J. A. T.
, and Luo
, A. C. J.
, 2011
, Fractional Dynamics and Control
, Springer Science & Business Media
, New York.3.
Zhong
, J.
, and Li
, L.
, 2015
, “Tuning Fractional-Order Controllers for a Solid-Core Magnetic Nearing System
,” IEEE Trans. Control Syst.
, 23
(4
), pp. 1648
–1656
.4.
Aghababa
, M. P.
, 2018
, “Adaptive Switching Control of Uncertain Fractional Systems: Application to Chua's Circuit
,” Int. J. Adaptive Control Signal Process.
, 32
(8
), pp. 1206
–1221
.5.
Aghababa
, M. P.
, 2017
, “Stabilization of a Class of Fractional-Order Chaotic Systems Using a Non-Smooth Control Methodology
,” Nonlinear Dyn.
, 89
(2
), pp. 1357
–1370
.6.
Aghababa
, M. P.
, 2014
, “A Lyapunov-Based Control Scheme for Robust Stabilization of Fractional Chaotic Systems
,” Nonlinear Dyn.
, 78
(3
), pp. 2129
–2140
.7.
Aghababa
, M. P.
, 2014
, “A Switching Fractional Calculus-Based Controller for Normal Non-Linear Dynamical Systems
,” Nonlinear Dyn.
, 75
(3
), pp. 577
–588
.8.
Al-Refai
, M.
, 2012
, “On the Fractional Derivatives at Extreme Points
,” Electron. J. Qual. Theory Differ. Equations
, 2012
(55
), pp. 1
–5
.9.
Dadras
, S.
, and Momeni
, H. R.
, 2012
, “Fractional Terminal Sliding Mode Control Design for a Class of Dynamical Systems With Uncertainty
,” Commun. Nonlinear Sci. Numer. Simul.
, 17
(1
), pp. 367
–377
.10.
Duc
, T. M.
, Hoa
, N. V.
, and Thanh-Phong
, D.
, 2018
, “Adaptive Fuzzy Fractional-Order Nonsingular Terminal Sliding Mode Control for a Class of Second-Order Nonlinear Systems
,” ASME J. Comput. Nonlinear Dyn.
, 13
(3
), p. 031004
.11.
Li
, C.
, and Deng
, W.
, 2007
, “Remarks on Fractional Derivatives
,” Appl. Math. Comput.
, 187
(2
), pp. 777
–784
.12.
Liu
, S.
, Jiang
, W.
, Li
, X.
, and Zhou
, X. F.
, 2016
, “Lyapunov Stability Analysis of Fractional Nonlinear Systems
,” Appl. Math. Lett.
, 51
, pp. 13
–19
.13.
Nojavanzadeh
, D.
, and Mohammadali
, B.
, 2016
, “Adaptive Fractional-Order Non-Singular Fast Terminal Sliding Mode Control for Robot Manipulators
,” IET Control Theory Appl.
, 10
, pp. 1565
–1572
.14.
Norelys
, A. C.
, Manuel
, A. D. M.
, and Javier
, A. G.
, 2014
, “Lyapunov Functions for Fractional Order Systems
,” Commun. Nonlinear Sci. Numer. Simul.
, 19
(9), pp. 2951
–2957
.15.
Rui-Hong
, L.
, and Wei-Sheng
, C.
, 2013
, “Complex Dynamical Behavior and Chaos Control in Fractional-Order Lorenz-Like Systems
,” Chin. Phys. B
, 22
(4), p. 040503
.https://iopscience.iop.org/article/10.1088/1674-1056/22/4/040503/meta16.
Ullah
, N.
, Songshan
, H.
, and Khattak
, M. I.
, 2016
, “Adaptive Fuzzy Fractional-Order Sliding Mode Controller for a Class of Dynamical Systems With Uncertainty
,” Trans. Inst. Meas. Control
, 38
(4
), pp. 402
–413
.17.
Utkin
, V. I.
, 1977
, “Variable Structure Systems With Sliding Modes
,” IEEE Trans. Autom. Control
, 22
(2
), pp. 212
–222
.18.
Wang
, Y.
, Luo
, G.
, Gu
, L.
, and Li
, X.
, 2016
, “Fractional-Order Nonsingular Terminal Sliding Mode Control of Hydraulic Manipulators Using Time Delay Estimation
,” J. Vib. Control
, 22
(19
), pp. 3998
–4011
.19.
Yu
, S.
, Xinghuo
, Y.
, Bijan
, S.
, and Zhihong
, M.
, 2005
, “Continuous Finite-Time Control for Robotic Manipulators With Terminal Sliding Mode
,” Automatica
, 41
(11
), pp. 1957
–1964
.Copyright © 2019 by ASME
You do not currently have access to this content.