Abstract

A novel methodology is presented in this paper to reduce the burden of calibrating an engine model associated with a high number of parameters and nonlinear equations. The proposed idea decreases the calibration candidate parameters by detecting the most influential ones in an engine air-charge path model and then using them as a reduced parameter set for further model calibration. Since only the most influential parameters are tuned at the final calibration stage, this approach helps to avoid over-parameterization associated with tuning highly nonlinear engine models. Detection of the influential parameters is proposed using sensitivity analysis followed by principal component analysis (PCA) as an early off-line stage in the model tuning process. Then, an ensemble Kalman filter (EnKF) is used for tuning the detected influential parameters. The Jacobian-free suboptimal filtering approach of EnKF allows tuning parameters either with off-line recorded data or during on-line engine testing. Using EnKF along with parameter set reduction presents an approach for decreasing the complexity of parameter tuning for online model calibration. Results from experiments on a heavy duty diesel engine show an average of 50% improvement of the model accuracy after calibrating the engine model using the proposed reduced parameter set tuning methodology.

References

1.
Qiu
,
Z.
,
Sun
,
J.
,
Jankovic
,
M.
, and
Santillo
,
M.
,
2016
, “
Nonlinear Internal Model Controller Design for Wastegate Control of a Turbocharged Gasoline Engine
,”
Control Eng. Pract.
,
46
, pp.
105
114
.10.1016/j.conengprac.2015.10.012
2.
Amini
,
M. R.
,
Shahbakhti
,
M.
, and
Hedrick
,
J. K.
,
2016
, “
Easily Verifiable Adaptive Sliding Mode Controller Design With Application to Automotive Engines
,”
SAE
Paper No. 2016-01-0629. 10.4271/2016-01-0629
3.
Hong
,
S.
,
Park
,
I.
, and
Sunwoo
,
M.
,
2016
, “
Model-Based Gain Scheduling Strategy for an Internal Model Control-Based Boost Pressure Controller in Variable Geometric Turbocharger System of Diesel Engines
,”
ASME J. Dyn. Syst., Meas., Control
,
138
(
3
), p.
031010
.10.1115/1.4032283
4.
Eriksson
,
L.
, and
Nielsen
,
L.
,
2014
,
Modeling and Control of Engines and Drivelines
,
Wiley
, Chennai, India.
5.
Guzzella
,
L.
, and
Onder
,
C.
,
2010
,
Introduction to Modeling and Control of Internal Combustion Engine Systems
,
Springer-Verlag
,
Berlin
.
6.
Wang
,
J.
,
2008
, “
Air Fraction Estimation for Multiple Combustion Mode Diesel Engines With Dual-Loop EGR Systems
,”
Control Eng. Pract.
,
16
(
12
), pp.
1479
1486
.10.1016/j.conengprac.2008.04.007
7.
Leufven
,
O.
, and
Eriksson
,
L.
,
2013
, “
A Surge and Choke Capable Compressor Flow Model-Validation and Extrapolation Capability
,”
Control Eng. Pract.
,
21
(
12
), pp.
1871
1883
.10.1016/j.conengprac.2013.07.005
8.
Al-Durra
,
A.
,
Canova
,
M.
, and
Yurkovich
,
S.
,
2013
, “
A Real-Time Pressure Estimation Algorithm for Closed-Loop Combustion Control
,”
Mech. Syst. Signal Process.
,
38
(
2
), pp.
411
427
.10.1016/j.ymssp.2013.02.008
9.
Moulin
,
P.
, and
Chauvin
,
J.
,
2011
, ” “
Modeling and Control of the Air System of a Turbocharged Gasoline Engine
,”
Control Eng. Pract.
,
19
(
3
), pp.
287
297
.10.1016/j.conengprac.2009.11.006
10.
Nikzadfar
,
K.
, and
Shamekhi
,
A. H.
,
2015
, “
More Than One Decade With Development of Common-Rail Diesel Engine Management Systems: A Literature Review on Modelling, Control, Estimation and Calibration
,”
Proc. Inst. Mech. Eng., Part D
,
229
(
8
), pp.
1110
1142
.10.1177/0954407014556114
11.
Beno
,
R.
,
Pachner
,
D.
, and
Havlena
,
V.
,
2017
, “
Robust Numerical Approach to Steady-State Calibration of Mean-Value Models
,”
Control Eng. Pract.
,
61
, pp.
186
197
.10.1016/j.conengprac.2016.04.009
12.
Pachner
,
D.
,
Germann
,
D.
, and
Stewart
,
G. E.
,
2012
,
Identification Techniques for Control Oriented Models of Internal Combustion Engines, in Identification for Automotive Systems
(Lecture in Control and Information Science),
London
,
Springer
, Berlin, pp.
257
282
.
13.
Wahlstrom
,
J.
, and
Eriksson
,
L.
,
2011
, “
Modelling Diesel Engines With a Variable-Geometry Turbocharger and Exhaust Gas Recirculation by Optimization of Model Parameters for Capturing Non-Linear System Dynamics
,”
Proc. Inst. Mech. Eng., Part D
,
225
(
7
), pp.
960
986
.10.1177/0954407011398177
14.
Hockerdal
,
E.
,
Frisk
,
E.
, and
Eriksson
,
L.
,
2011
, “
EKF-Based Adaptation of Look-Up Tables With an Air Mass-Flow Sensor Application
,”
Control Eng. Pract.
,
19
(
5
), pp.
442
453
.10.1016/j.conengprac.2011.01.006
15.
Ljung
,
L.
, and
Soderstrom
,
T.
,
1983
,
Theory and Practice of Recursive Identification
,
The MIT Press
, Cambridge, MA.
16.
Astrom
,
K. J.
, and
Wittenmark
,
B.
,
2008
,
Adaptive Control
, 2nd ed.,
Dover Publications
,
New York
.
17.
Choroszucha
,
R. B.
,
Sun
,
J.
, and
Butts
,
K.
,
2015
, “
Closed-Loop Model Order Reduction and MPC for Diesel Engine Airpath Control
,”
American Control Conference
, Chicago, IL, July 1–3, pp.
3279
3284
.10.1109/ACC.2015.7171838
18.
Sharma
,
R.
,
Nesic
,
D.
, and
Manzie
,
C.
,
2011
, “
Model Reduction of Turbocharged (TC) Spark Ignition (SI) Engines
,”
IEEE Trans. Control Syst. Technol.
,
19
(
2
), pp.
297
310
.10.1109/TCST.2010.2043735
19.
Salehi
,
R.
,
Stefanopoulou
,
A. G.
,
Kihas
,
D.
, and
Uchanski
,
M.
,
2016
, “
Selection and Tuning of a Reduced Parameter Set for a Turbocharged Diesel Engine Model
,”
American Control Conference
(
ACC
), Boston, MA, July 6–8, pp.
5087
5092
.10.1109/ACC.2016.7526160
20.
Salehi
,
R.
, and
Stefanopoulou
,
A. G.
,
2015
, “
Effective Component Tuning in a Diesel Engine Model Using Sensitivity Analysis
,”
ASME
Paper No. DSCC2015-9729.10.1115/DSCC2015-9729
21.
Burgers
,
G.
,
Jan van Leeuwen
,
P.
, and
Evensen
,
G.
,
1998
, “
Analysis Scheme in the Ensemble Kalman Filter
,”
Mon. Weather Rev.
,
126
(
6
), pp.
1719
1724
.10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2
22.
Moradkhani
,
H.
,
Sorooshian
,
S.
,
Gupta
,
H. V.
, and
Houser
,
P. R.
,
2005
, “
Dual State-Parameter Estimation of Hydrological Models Using Ensemble Kalman Filter
,”
Adv. Water Resour.
,
28
(
2
), pp.
135
147
.10.1016/j.advwatres.2004.09.002
23.
Brinkert
,
N.
,
Sumser
,
S.
,
Weber
,
S.
,
Fieweger
,
K.
,
Schulz
,
A.
, and
Bauer
,
H.
,
2013
, “
Understanding the Twin Scroll Turbine: Flow Similarity
,”
ASME J. Turbomach.
,
135
(
2
), p.
021039
.10.1115/1.4006607
24.
Hand
,
M.
,
Hellstrom
,
E.
,
Kim
,
D.
,
Stefanopoulou
,
A. G.
,
Kollien
,
J.
, and
Savonen
,
C.
,
2013
, “
Model and Calibration of a Diesel Engine Air Path With an Asymmetric Twin Scroll Turbine
,”
ASME
Paper No. ICEF2013-19134.10.1115/ICEF2013-19134
25.
Kiwan
,
R.
,
Stefanopoulou
,
A. G.
,
Martz
,
J.
,
Surnilla
,
G.
,
Ali
,
I.
, and
Styles
,
D. J.
,
2016
, “
Effects of Differential Pressure Measurement Characteristics on Low Pressure-EGR Estimation Error in Si-Engines
,”
IFAC-Papers OnLine
,
49
(
11
), pp.
722
729
.10.1016/j.ifacol.2016.08.105
26.
Marelli
,
S.
, and
Capobianco
,
M.
,
2011
, “
Steady and Pulsating Flow Efficiency of a Waste-Gated Turbocharger Radial Flow Turbine for Automotive Application
,”
Energy
,
36
(
1
), pp.
459
465
.10.1016/j.energy.2010.10.019
27.
Salehi
,
R.
,
Vossoughi
,
G. R.
, and
Alasty
,
A.
,
2013
, “
Modeling and Estimation of Unmeasured Variables in a Wastegate Operated Turbocharger
,”
ASME J. Eng. Gas Turbines Power
,
136
(
5
), p.
052601
.10.1115/1.4025498
28.
Dunteman
,
G. H.
,
1989
,
Principal Component Analysis
(Sage University Paper series on Quantitative Applications in the Social Sciences),
Sage
,
Newbury Park, CA
.
29.
Rujun
,
L.
,
Henson
,
M.
, and
Kurtz
,
M.
,
2004
, “
Selection of Model Parameters for Off-Line Parameter Estimation
,”
IEEE Control Syst. Technol.
,
12
(
3
), pp.
402
412
.10.1109/TCST.2004.824799
30.
Isermann
,
R.
, and
Munchhof
,
M.
,
2011
,
Identification of Dynamic Systems an Introduction With Applications
,
Springer-Verlag
,
Berlin
, Chap. 21.
31.
Plett
,
G. L.
,
2004
, “
Extended Kalman Filtering for Battery Management Systems of LiPB-Based HEV Battery Packs—Part 3. State and Parameter Estimation
,”
J. Power Sources
,
134
(
2
), pp.
277
292
.10.1016/j.jpowsour.2004.02.033
32.
Ait-El-Fquih
,
B.
,
El Gharamti
,
M.
, and
Hoteit
,
I.
,
2016
, ” “
A Bayesian Consistent Dual Ensemble Kalman Filter for State-Parameter Estimation in Subsurface Hydrology
,”
Hydrol. Earth Syst. Sci.
,
20
(
8
), pp.
3289
3307
.10.5194/hess-20-3289-2016
33.
Haykin
,
S.
, ed.,
2001
,
Kalman Filtering and Neural Networks
,
Wiley
,
New York
.
34.
Evensen
,
G.
,
2007
,
Data Assimilation the Ensemble Kalman Filter
,
Springer-Verlag
,
Berlin
.
35.
Reichle
,
R. H.
,
Walker
,
J. P.
,
Koster
,
R. D.
, and
Houser
,
P. R.
,
2002
, “
Extended Versus Ensemble Kalman Filtering for Land Data Assimilation
,”
J. Hydrometeorol.
,
3
(
6
), pp.
728
740
.10.1175/1525-7541(2002)003<0728:EVEKFF>2.0.CO;2
36.
Bavdekar
,
V. A.
,
Deshpande
,
A. P.
, and
Patwardhan
,
S. C.
,
2011
, “
Identification of Process and Measurement Noise Covariance for State and Parameter Estimation Using Extended Kalman Filter
,”
J. Process Control
,
21
(
4
), pp.
585
601
.10.1016/j.jprocont.2011.01.001
You do not currently have access to this content.